Categorised Counting Mediated by Blotting Membrane Systems for Particle-Based Data Mining and Numerical Algorithms

  • Thomas HinzeEmail author
  • Konrad Grützmann
  • Benny Höckner
  • Peter Sauer
  • Sikander Hayat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8961)


Blotting turns out to be a rather common and effective approach in molecular information processing. An initial pool of molecules considered as sets of individual data becomes spatially separated according to the presence or absence of specific attributes like weight index or chemical groups and labels. In this connection, molecules with similar properties form a spot or blot. Finally, each blot can be visualised or analysed revealing a corresponding score index or count from the number of accumulated molecules. The entire variety of blots which emerge over time provides crucial and condensed information about the molecular system under study. Inspired by the idea to obtain significant data reduction while keeping the essential characteristics of the molecular system as output, we introduce blotting membrane systems as a modelling framework open for numerous applications in data mining. By means of three dedicated case studies, we demonstrate its descriptive capability from an explorative point of view. Our case studies address particle-based numerical integration, which suggests a model for the synchronised 17-year life cycle of Magicicadas. Furthermore, we exemplify electrophoresis as a way to carry out a variant of bucket sort.


Membrane System Charged Molecule Anteroposterior Axis Embryonic Pattern Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P Systems. Natural Computing 10, 3–16 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum sensing P systems. Theoretical Computer Science 371(1–2), 20–33 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bowen, B., Steinberg, J., Laemmli, U.K., Weintraub, H.: The detection of DNA-binding proteins by protein blotting. Nucleic Acids Research 8(1), 1–20 (1980)CrossRefGoogle Scholar
  4. 4.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994)CrossRefGoogle Scholar
  5. 5.
    Churchman, L.S., Ökten, Z., Rock, R.S., Dawson, J.F., Spudich, J.A.: Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. PNAS 102(5), 1419–1423 (2005)CrossRefGoogle Scholar
  6. 6.
    Cohen, H., Lefebvre, C. (eds.): Handbook of Categorization in Cognitive Science. Elsevier (2005)Google Scholar
  7. 7.
    Dawson, T.E., Pate, J.S.: Seasonal water uptake and movement in root systems of plants of dimorphic root morphology: A stable isotope investigation. Oecologia 107, 13–20 (1996)CrossRefGoogle Scholar
  8. 8.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. American Assoc. for Artificial Intelligence 3, 37–54 (1996)Google Scholar
  9. 9.
    Hames, D., Hooper, N.: Biochemistry, 3rd edn. Taylor & Francis (2005)Google Scholar
  10. 10.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2011)Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Series in Statistics. Springer Verlag (2009)Google Scholar
  12. 12.
    Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register Machine Computations on Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using Mass-Action Kinetics. International Journal of Foundations of Computer Science 20(3), 411–426 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hinze, T., Schell, B., Schumann, M., Bodenstein, C.: Maintenance of Chronobiological Information by P System Mediated Assembly of Control Units for Oscillatory Waveforms and Frequency. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 208–227. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Hinze, T., Behre, J., Bodenstein, C., Escuela, G., Grünert, G., Hofstedt, P., Sauer, P., Hayat, S., Dittrich, P.: Membrane Systems and Tools Combining Dynamical Structures with Reaction Kinetics for Applications in Chronobiology. In: Frisco, P., Gheorghe, M., Perez-Jimenez, M.J. (eds.) Applications of Membrane Computing in Systems and Synthetic Biology. Series Emergence, Complexity, and Computation, vol. 7, pp. 133–173. Springer Verlag (2014)Google Scholar
  15. 15.
    Johannson, B.G.: Agarose Gel Electrophoresis. Scandinavian Journal of Clinical and Laboratory Investigation 29(s124), 7–19 (1972)CrossRefGoogle Scholar
  16. 16.
    Kremers, G.J., Gilbert, S.G., Cranfill, P.J., Davidson, M.W., Piston, D.W.: Fluorescent proteins at a glance. Journal of Cell Science 124, 157–160 (2011)CrossRefGoogle Scholar
  17. 17.
    Marchetti, L., Manca, V., Pagliarini, R., Bollig-Fischer, A.: MP Modelling for Systems Biology: Two Case Studies. In: Frisco, P., Gheorghe, M., Perez-Jimenez, M.J. (eds.) Applications of Membrane Computing in Systems and Synthetic Biology. Series Emergence, Complexity, and Computation, vol. 7, pp. 223–243. Springer Verlag (2014)Google Scholar
  18. 18.
    Marlatt, C.L.: The periodical cicada. Bull. U.S. Dept. Agri. Div. Entomol. Bull. 18, 52 (1907)Google Scholar
  19. 19.
    Miller, M.B., Bassler, B.L.: Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001)CrossRefGoogle Scholar
  20. 20.
    Păun, Gh.: Membrane Computing: An Introduction. Springer Verlag (2002)Google Scholar
  21. 21.
    Sabnis, R.W.: Handbook of biological dyes and stains: synthesis and industrial application. Wiley-VCH (2010)Google Scholar
  22. 22.
    Southern, E.M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98(3), 503–517 (1975)CrossRefGoogle Scholar
  23. 23.
    Sparmann, A., van Lohuizen, M.: Polycomb silencers control cell fate, development and cancer. Nature Reviews Cancer 6, 846–856 (2006)CrossRefGoogle Scholar
  24. 24.
    Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. PNAS 76(9), 4350–4354 (1979)CrossRefGoogle Scholar
  25. 25.
    Nüsslein-Volhard, C.: Determination of the embryonic axes of Drosophila. Development 113, 1–10 (1991)Google Scholar
  26. 26.
    Lizotte-Waniewski, M., Tawe, W., Guiliano, D.B., Lu, W., Liu, J., Williams, S.A., Lustigman, S.: Identification of Potential Vaccine and Drug Target Candidates by Expressed Sequence Tag Analysis and Immunoscreening of Onchocerca volvulus Larval cDNA Libraries. Infection and Immunity 68(6), 3491–3501 (2000)CrossRefGoogle Scholar
  27. 27.
    Westermeier, R.: Electrophoresis in Practice. Wiley-VCH (2005)Google Scholar
  28. 28.
    Williams, K.S., Simon, C.: The ecology, behavior and evolution of periodical cicadas. Annual Review of Entomology 40, 269–295 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Hinze
    • 1
    • 2
    Email author
  • Konrad Grützmann
    • 3
  • Benny Höckner
    • 1
  • Peter Sauer
    • 1
  • Sikander Hayat
    • 4
  1. 1.Institute of Computer Science and Information and Media TechnologyBrandenburg University of TechnologyCottbusGermany
  2. 2.Friedrich Schiller University JenaJenaGermany
  3. 3.Helmholtz Centre for Environmental Research – UFZLeipzigGermany
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations