Advertisement

Multimodal Non-Rigid Registration Methods Based on Demons Models and Local Uncertainty Quantification Used in 3D Brain Images

  • Isnardo Reducindo
  • Aldo R. Mejía-Rodríguez
  • Edgar Arce-Santana
  • Daniel U. Campos-Delgado
  • Elisa Scalco
  • Giovanni M. Cattaneo
  • Giovanna Rizzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8888)

Abstract

In this work, we propose a novel fully automated method to solve the 3D multimodal non-rigid image registration problem. The proposed strategy overcomes the monomodal intensity restriction of fluid-like registration (FLR) models, such as Demons-based registration algorithms, by applying a mapping that relies on an intensity uncertainty quantification in a local neighbourhood, bringing the target and source images into a common domain where they are comparable, no matter their image modalities or mismatched intensities between them. The proposed methodology was tested with T1, T2 and PD weighted brain magnetic resonance (MR) images with synthetic deformations, and CT-MR brain images from a radiotherapy clinical case. The performance of the proposed approach was evaluated quantitatively by standard indices that assess the correct alignment of anatomical structures of interest. The results obtained in this work show that the addition of the local uncertainty mapping properly resolve the monomodal restriction of FLR algorithms when same anatomic counterparts exists in the images to register, and suggest that the proposed strategy can be an option to achieve multimodal 3D registrations.

Keywords

Image Registration Local Uncertainty Image Registration Method Mismatched Intensity Intensity Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press (2004)Google Scholar
  3. 3.
    Crum, W., Hartkens, T., Hill, D.: Non-rigid image registration: theory and practice. British Journal of Radiology 77(spec. iss. 2), S140 – S153 (2004)Google Scholar
  4. 4.
    Mani, V., Rivazhagan, D.: Survey of medical image registration. Journal of Biomedical Engineering and Technology 1(2), 8–25 (2013)Google Scholar
  5. 5.
    Rueckert, D., Aljabar, P.: Nonrigid registration of medical images: Theory, methods, and applications. IEEE Signal Processing Magazine 27(4), 113–119 (2010)CrossRefGoogle Scholar
  6. 6.
    Vásquez-Osorio, E.M., Hoogeman, M.S., Bondar, L., Levendag, P.C., Heijmen, B.J.M.: A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy. Medical Physics 36(7), 2848–2859 (2009)CrossRefGoogle Scholar
  7. 7.
    Pluim, J.P.W., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhuang, X., Arridge, S., Hawkes, D., Ourselin, S.: A nonrigid registration framework using spatially encoded mutual information and free-form deformations. IEEE Transactions on Medical Imaging 30(10), 1819–1828 (2011)CrossRefGoogle Scholar
  9. 9.
    Hui, W., Yong, Y., Hongjun, W., Guanzhong, G.: A modified optical flow based method for registration of 4d ct data of hepatocellular carcinoma patients. In: 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 21–25 (2012)Google Scholar
  10. 10.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1, suppl. 1), S61 – S72 (2009)Google Scholar
  11. 11.
    Janssens, G., Jacques, L., de Xivry, J.O., Geets, X., Macq, B.: Diffeomorphic registration of images with variable contrast enhancement. International Journal of Biomedical Imaging 2011, 3:1–3:12 (2011)Google Scholar
  12. 12.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)CrossRefGoogle Scholar
  13. 13.
    Arce-Santana, E., Campos-Delgado, D.U., Alba, A.: A non-rigid multimodal image registration method based on particle filter and optical flow. In: Bebis, G., et al. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 35–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s. Medical Image Analysis 2, 243–260 (1988)CrossRefGoogle Scholar
  15. 15.
    Reducindo, I., Mejia-Rodriguez, A.R., Arce-Santana, E.R., Campos-Delgado, D.U., Vigueras-Gomez, F., Scalco, E., Bianchi, A.M., Cattaneo, G.M., Rizzo, G.: Multimodal non-rigid registration methods based on local variability measures in computed tomography and magnetic resonance brain images. IET Image Processing (2014)Google Scholar
  16. 16.
    Nyul, L., Udupa, J., Zhang, X.: New variants of a method of mri scale standardization. IEEE Transactions on Medical Imaging 19(2), 143–150 (2000)CrossRefGoogle Scholar
  17. 17.
    Kwan, R., Evans, A., Pike, G.: Mri simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 18(11), 1085–1097 (1999)CrossRefGoogle Scholar
  18. 18.
    Heimann, T., Van Ginneken, B., Styner, M., Arzhaeva, Y., Aurich, V., Bauer, C., et al.: Comparison and evaluation of methods for liver segmentation from ct datasets. IEEE Transactions on Medical Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Isnardo Reducindo
    • 1
  • Aldo R. Mejía-Rodríguez
    • 1
  • Edgar Arce-Santana
    • 1
  • Daniel U. Campos-Delgado
    • 1
  • Elisa Scalco
    • 2
  • Giovanni M. Cattaneo
    • 3
  • Giovanna Rizzo
    • 2
  1. 1.Facultad de CienciasUniversidad Autónoma de San Luis Potosí, S.L.P.México
  2. 2.Institute of Molecular Bioimaging and Physiology (IBFM)-CNRMilanItaly
  3. 3.Medical Physics Department, Ospedale San Raffaele, Scientific InstituteMilanItaly

Personalised recommendations