Linked Data for Cross-Domain Decision-Making in Tourism

  • Marta Sabou
  • Adrian M. P. Brașoveanu
  • Irem Önder
Conference paper

Abstract

In today’s global economy, tourism managers need to consider a range of factors when making important decisions. Besides traditional tourism indicators (such as arrivals or bednights) they also need to take into account indicators from other domains, for example, economy and sustainability. From a technology perspective, building decision support systems that would allow inspecting indicators from different domains in order to understand their (potential) correlations, is a challenging task. Indeed, tourism (and other indicators), while mostly available as open data, are stored using database centric technologies that require tedious manual efforts for combining the data sets. In this paper we describe a Linked Data based solution to building an integrated dataset as a basis for a decision support system capable of enabling cross-domain decision-making. Concretely, we have exposed tourism statistics from TourMIS, a core source of European tourism statistics, as linked data and used it subsequently to connect to other sources of indicators. A visual dashboard explores this integrated data to offer cross-domain decision support to tourism managers.

Keywords

Statistical data Decision support Linked data TourMIS 

References

  1. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic Web. The Scientific American, May 2001.Google Scholar
  2. Franke, T. (2006). TourBO: A prototype of a regional tourism advising system in Germany. In H. W. Daniel, R. Fesenmaier, & K. W. Wöber (Eds.), Destination recommendation systems: Behavioural foundations and applications (pp. 257–280). Wallingford: CABI.CrossRefGoogle Scholar
  3. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220.CrossRefGoogle Scholar
  4. Isele, R., Jentzsch, A., & Bizer, C. (2010). Silk server – Adding missing links while consuming linked data. COLD Workshop 2010.Google Scholar
  5. Mazanec, J. A. (2006). Building adaptive systems: A neural net approach. In H. W. Daniel, R. Fesenmaier, & K. W. Wöber (Eds.), Destination recommendation systems: Behavioral foundations and applications (pp. 137–170). Wallingford: CABI.CrossRefGoogle Scholar
  6. Ricci, F., & Nguyen, Q. N. (2006). MobyRek: A conversational recommender system for on-the-move travellers. In H. W. Daniel, R. Fesenmaier, & K. W. Wöber (Eds.), Destination recommendation systems: Behavioural foundations and applications (pp. 281–294). Wallingford: CABI.CrossRefGoogle Scholar
  7. Ricci, F., Cavada, D., Mirzadeh, N., & Venturini, A. (2006). Case-based travel recommendations. In H. W. Daniel, R. Fesenmaier, & K. W. Wöber (Eds.), Destination recommendation systems: Behavioural foundations and applications (pp. 67–93). Wallingford: CABI.CrossRefGoogle Scholar
  8. Ricci, F., Fesenmaier, D. R., Mirzadeh, N., et al. (2006). DieToRecs: A case-based travel advisory system. In H. W. Daniel, R. Fesenmaier, & K. W. Wöber (Eds.), Destination recommendation systems: Behavioural foundations and applications (pp. 227–239). Wallingford: CABI.CrossRefGoogle Scholar
  9. Sabou, M., Arsal, I., & Brasoveanu, A. M. P. (2013). TourMISLOD: A tourism linked data set. Semantic Web Journal, 4(3), 271–276.Google Scholar
  10. Wöber, K. (2003). Information supply in tourism management by marketing decision support systems. Tourism Management, 24(3), 241–255.CrossRefGoogle Scholar
  11. Zins, A., & Grabler, K. (2006). Destination recommendations based on travel decision styles. In H. W. Daniel, R. Fesenmaier, & K. W. Wöber (Eds.), Destination recommendation systems: Behavioural foundations and applications (pp. 94–120). Wallingford: CABI.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marta Sabou
    • 1
  • Adrian M. P. Brașoveanu
    • 1
  • Irem Önder
    • 1
  1. 1.MODUL UniversityViennaAustria

Personalised recommendations