Towards a Framework for Adaptive Resource Provisioning in Large-Scale Distributed Agent-Based Simulation

  • Masatoshi Hanai
  • Toyotaro Suzumura
  • Anthony Ventresque
  • Kazuyuki Shudo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8805)


Large scale distributed agent-based simulations run on several computing units (e.g., virtual machines in the Cloud, nodes in a supercomputer). Classically, these systems try to (re-)load-balance the nodes as overloaded nodes slow down the process.However another challenge in large scale distributed simulations is that the overall load evolves. In this paper we leverage on commodity computing to adapt resource provisioning (number of computing units) to the load during the execution of the simulation. We also propose an asynchronous migration mechanism that migrate workload between computing nodes efficiently when nodes wait for synchronisation barriers to happen. We validate our implementation on a scenario simulating one day of vehicular traffic in Tokyo, running on 2 to 8 machines depending on the demand. Our evaluation shows a 26% reduction in data migration time compared to a naive migration approach between computing units.


Cloud Computing Migration Time Computing Node Resource Provider Cloud Computing Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Rackspace Cloud,
  7. 7.
  8. 8.
    Bragard, Q., Ventresque, A., Murphy, L.: dSUMO: towards a distributed SUMO. In: SUMO Conference (2013)Google Scholar
  9. 9.
    Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. ACM SIGPLAN Notices 40(10), 519–538 (2005)CrossRefGoogle Scholar
  10. 10.
    Collier, N., North, M.: Repast HPC: A platform for large-scale agent-based modeling. Wiley (2011)Google Scholar
  11. 11.
    Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., Marwah, M.: Minimizing data center sla violations and power consumption via hybrid resource provisioning. In: Green Computing Conference and Workshops, pp. 1–8. IEEE (2011)Google Scholar
  12. 12.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed Computing 48(1), 96–129 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Karypis, G., Kumar, V.: METIS - a software package for partitioning unstructured graphs, meshes, and computing fill-reducing orderings of sparse matrices-version 5.0. University of Minnesota (2011)Google Scholar
  14. 14.
    Li, S., Wang, Y., Qiu, X., Wang, D., Wang, L.: A workload prediction-based multi-vm provisioning mechanism in cloud computing. In: Asia-Pacific Network Operations and Management Symposium, pp. 1–6. IEEE (2013)Google Scholar
  15. 15.
    Osogami, T., Imamichi, T., Mizuta, H., Morimura, T., Raymond, R., Suzumura, T., Takahashi, R., Ide, T.: IBM Mega Traffic Simulator. Technical report, Technical Report RT0896, IBM Research–Tokyo (2012)Google Scholar
  16. 16.
    Osogami, T., Imamichi, T., Mizuta, H., Suzumura, T., Ide, T.: Toward simulating entire cities with behavioral models of traffic. IBM Journal of Research and Development 57(5), 1–6 (2013)CrossRefGoogle Scholar
  17. 17.
    Paolucci, M., et al.: Towards a living earth simulator. The European Physical Journal Special Topics 214(1), 77–108 (2012)CrossRefGoogle Scholar
  18. 18.
    Raney, B., Cetin, N., Völlmy, A., Vrtic, M., Axhausen, K., Nagel, K.: An agent-based microsimulation model of swiss travel: First results. Networks and Spatial Economics 3(1), 23–41 (2003)CrossRefGoogle Scholar
  19. 19.
    Suzumura, T., Kanezashi, H.: Accelerating large-scale distributed traffic simulation with adaptive synchronization method. In: ITS World Congress (2013)Google Scholar
  20. 20.
    Suzumura, T., Kato, S., Imamichi, T., Takeuchi, M., Kanezashi, H., Ide, T., Onodera, T.: X10-based massive parallel large-scale traffic flow simulation. In: ACM SIGPLAN X10 Workshop, p. 3. ACM (2012)Google Scholar
  21. 21.
    Ventresque, A., Bragard, Q., Liu, E.S., Nowak, D., Murphy, L., Theodoropoulos, G., Liu, J.Q.: SParTSim: A space partitioning guided by road network for distributed traffic simulations. In: DS-RT, pp. 202–209. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Masatoshi Hanai
    • 1
    • 2
  • Toyotaro Suzumura
    • 2
    • 4
  • Anthony Ventresque
    • 2
    • 3
    • 4
  • Kazuyuki Shudo
    • 1
  1. 1.Dept. of Mathematical and Computing SciencesTokyo Institute of TechnologyMeguroJapan
  2. 2.School of Computer Science and InformaticsUniversity College DublinIreland
  3. 3.Lero, the Irish Software Engineering Research CentreIreland
  4. 4.Smarter Cities Technology CentreIBM Research, Damastown Industrial Estate, MulhuddartDublinIreland

Personalised recommendations