Hormonal Influence on the Neuromusculoskeletal System in Pregnancy

  • Maria E. ReeseEmail author
  • Ellen Casey


One of the hallmarks of pregnancy is the dramatic change of the hormonal milieu. The primary role of shifting hormones is to maintain and support the growing fetus and to allow the pregnant mother to carry and deliver a full-term, healthy infant. However, many of these hormones also have the potential to impact the mother’s neuromusculoskeletal system. In this chapter, we will discuss the growing body of literature regarding the influence of sex and related hormones on the neuromusculoskeletal system. In addition to focusing on the obstetrics literature, we will also extrapolate from research on nonpregnant women as well as from research on animal models as appropriate. We begin the chapter with background information on each of the hormones that will be discussed. We chose to organize the chapter by hormone-sensitive tissues to provide a framework for the clinician treating peripartum and postpartum females. Lastly, figures and tables throughout the chapter help summarize and provide a ready visual reference for the busy clinician.


Pregnancy Estrogen Progesterone Relaxin Testosterone Bone Cartilage Ligament Myotendinous unit Nervous system 


  1. 1.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.PubMedGoogle Scholar
  2. 2.
    Ahrens KA, Vladutiu CJ, Mumford SL, Schliep KC, Perkins NJ, Wactawski-Wende J, et al. The effect of physical activity across the menstrual cycle on reproductive function. Ann Epidemiol. 2014;24(2):127–34. PubMed PMID: 24345590. Pubmed Central PMCID: Pmc3946734. Epub 2013/12/19. eng.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Peck JD, Hulka BS, Savitz DA, Baird D, Poole C, Richardson BE. Accuracy of fetal growth indicators as surrogate measures of steroid hormone levels during pregnancy. Am J Epidemiol. 2003;157(3):258–66. PubMed PMID: 12543626. Epub 2003/01/25. eng.PubMedGoogle Scholar
  4. 4.
    Draca S. Estriol and progesterone: a new role for sex hormones. Int J Biomed Sci. 2006;2(4):305–7. PubMed PMID: 23674997. Pubmed Central PMCID: Pmc3614637. Epub 2006/12/01. eng.PubMedCentralPubMedGoogle Scholar
  5. 5.
    O’Leary P, Boyne P, Flett P, Beilby J, James I. Longitudinal assessment of changes in reproductive hormones during normal pregnancy. Clin Chem. 1991;37(5):667–72. PubMed PMID: 1827758. Epub 1991/05/01. eng.PubMedGoogle Scholar
  6. 6.
    Moller UK, Streym S, Mosekilde L, Heickendorff L, Flyvbjerg A, Frystyk J, et al. Changes in calcitropic hormones, bone markers and insulin-like growth factor I (IGF-I) during pregnancy and postpartum: a controlled cohort study. Osteoporos Int. 2013;24(4):1307–20. PubMed PMID: 22855199.PubMedGoogle Scholar
  7. 7.
    Sowers MF, Hollis BW, Shapiro B, Randolph J, Janney CA, Zhang D, et al. Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA. 1996;276(7):549–54. PubMed PMID: 8709404. Epub 1996/08/21. eng.PubMedGoogle Scholar
  8. 8.
    Clarke BL, Khosla S. Female reproductive system and bone. Arch Biochem Biophys. 2010;503(1):118–28. PubMed PMID: 20637179. Pubmed Central PMCID: 2942975.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Toriola AT, Surcel HM, Husing A, Grankvist K, Lakso HA, Schock H, et al. Association of serum 25-hydroxyvitamin D (25-OHD) concentrations with maternal sex steroids and IGF-1 hormones during pregnancy. Cancer Causes Control. 2011;22(6):925–8. PubMed PMID: 21387179. Pubmed Central PMCID: 3131105.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Abbassi-Ghanavati M, Greer LG, Cunningham FG. Pregnancy and laboratory studies: a reference table for clinicians. Obstet Gynecol. 2009;114(6):1326–31. PubMed PMID: 19935037. Epub 2009/11/26. eng.PubMedGoogle Scholar
  11. 11.
    Di Renzo GC, Mattei A, Gojnic M, Gerli S. Progesterone and pregnancy. Curr Opin Obstet Gynecol. 2005;17(6):598–600. PubMed PMID: 16258341. Epub 2005/11/01. eng.PubMedGoogle Scholar
  12. 12.
    Goldsmith LT, Weiss G, Steinetz BG. Relaxin and its role in pregnancy. Endocrinol Metab Clin North Am. 1995;24(1):171–86. PubMed PMID: 7781625.PubMedGoogle Scholar
  13. 13.
    Dehghan F, Haerian BS, Muniandy S, Yusof A, Dragoo JL, Salleh N. The effect of relaxin on the musculoskeletal system. Scand J Med Sci Sports. 2013 Nov 28. PubMed PMID: 24283470. Epub 2013/11/29. Eng.Google Scholar
  14. 14.
    Aldabe D, Ribeiro DC, Milosavljevic S, Dawn BM. Pregnancy-related pelvic girdle pain and its relationship with relaxin levels during pregnancy: a systematic review. Eur Spine J. 2012;21(9):1769–76. PubMed PMID: 22310881. Pubmed Central PMCID: 3459115.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Wreje U, Kristiansson P, Aberg H, Bystrom B, von Schoultz B. Serum levels of relaxin during the menstrual cycle and oral contraceptive use. Gynecol Obstet Invest. 1995;39(3):197–200. PubMed PMID: 7789917. Epub 1995/01/01. eng.PubMedGoogle Scholar
  16. 16.
    Borg-Stein JP, Fogelman DJ, Ackerman KE. Exercise, sports participation, and musculoskeletal disorders of pregnancy and postpartum. Semin Neurol. 2011;31(4):413–22. PubMed PMID: 22113514. Epub 2011/11/25. eng.PubMedGoogle Scholar
  17. 17.
    Dumas GA, Reid JG. Laxity of knee cruciate ligaments during pregnancy. J Orthop Sports Phys Ther. 1997;26(1):2–6. PubMed PMID: 9201635. Epub 1997/07/01. eng.PubMedGoogle Scholar
  18. 18.
    Eddie LW, Bell RJ, Lester A, Geier M, Bennett G, Johnston PD, et al. Radioimmunoassay of relaxin in pregnancy with an analogue of human relaxin. Lancet. 1986;1(8494):1344–6. PubMed PMID: 2872469.PubMedGoogle Scholar
  19. 19.
    Tincello DG, Teare J, Fraser WD. Second trimester concentration of relaxin and pregnancy related incontinence. Eur J Obstet Gynecol Reprod Biol. 2003;106(2):237–8. PubMed PMID: 12551802.PubMedGoogle Scholar
  20. 20.
    Bani D. Relaxin: a pleiotropic hormone. Gen Pharmacol Vasc Syst. 1997;28(1):13–22.Google Scholar
  21. 21.
    Schauberger CW, Rooney BL, Goldsmith L, Shenton D, Silva PD, Schaper A. Peripheral joint laxity increases in pregnancy but does not correlate with serum relaxin levels. Am J Obstet Gynecol. 1996;174(2):667–71. PubMed PMID: 8623804.PubMedGoogle Scholar
  22. 22.
    Bammann BL, Coulam CB, Jiang NS. Total and free testosterone during pregnancy. Am J Obstet Gynecol. 1980;137(3):293–8. PubMed PMID: 7189643. Epub 1980/06/01. eng.PubMedGoogle Scholar
  23. 23.
    Mizuno M, Lobotsky J, Lloyd CW, Kobayashi T, Murasawa Y. Plasma androstenedione and testerone during pregnancy and in the newborn. J Clin Endocrinol Metab. 1968;28(8):1133–42. PubMed PMID: 5676177. Epub 1968/08/01. eng.PubMedGoogle Scholar
  24. 24.
    Voogt JL, Lee Y, Yang S, Arbogast L. Regulation of prolactin secretion during pregnancy and lactation. Prog Brain Res. 2001;133:173–85. PubMed PMID: 11589129. Epub 2001/10/09. eng.PubMedGoogle Scholar
  25. 25.
    Johnson CA. Occurrence of de Quervain’s disease in postpartum women. J Fam Pract. 1991;32(3):325–7. PubMed PMID: 2002325. Epub 1991/03/01. eng.PubMedGoogle Scholar
  26. 26.
    Ireland ML, Ott SM. The effects of pregnancy on the musculoskeletal system. Clin Orthop Relat Res. 2000;372:169–79. PubMed PMID: 10738426. Epub 2000/03/30. eng.PubMedGoogle Scholar
  27. 27.
    Cushard Jr WG, Creditor MA, Canterbury JM, Reiss E. Physiologic hyperparathyroidism in pregnancy. J Clin Endocrinol Metab. 1972;34(5):767–71. PubMed PMID: 5012492. Epub 1972/05/01. eng.PubMedGoogle Scholar
  28. 28.
    Seki K, Makimura N, Mitsui C, Hirata J, Nagata I. Calcium-regulating hormones and osteocalcin levels during pregnancy: a longitudinal study. Am J Obstet Gynecol. 1991;164(5 Pt 1):1248–52. PubMed PMID: 2035567. Epub 1991/05/01. eng.PubMedGoogle Scholar
  29. 29.
    Kalkwarf HJ, Specker BL. Bone mineral changes during pregnancy and lactation. Endocrine. 2002;17(1):49–53. PubMed PMID: 12014704. Epub 2002/05/17. eng.PubMedGoogle Scholar
  30. 30.
    Grill V, Hillary J, Ho PM, Law FM, MacIsaac RJ, MacIsaac IA, et al. Parathyroid hormone-related protein: a possible endocrine function in lactation. Clin Endocrinol (Oxf). 1992;37(5):405–10. PubMed PMID: 1486689. Epub 1992/11/01. eng.Google Scholar
  31. 31.
    Ardawi MS, Nasrat HA, BA’Aqueel HS. Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrinol. 1997;137(4):402–9. PubMed PMID: 9368509. Epub 1997/11/22. eng.PubMedGoogle Scholar
  32. 32.
    Wei SQ, Qi HP, Luo ZC, Fraser WD. Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2013;26(9):889–99. PubMed PMID: 23311886. Epub 2013/01/15. eng.PubMedGoogle Scholar
  33. 33.
    O’Brien KO, Donangelo CM, Zapata CL, Abrams SA, Spencer EM, King JC. Bone calcium turnover during pregnancy and lactation in women with low calcium diets is associated with calcium intake and circulating insulin-like growth factor 1 concentrations. Am J Clin Nutr. 2006;83(2):317–23. PubMed PMID: 16469990. Epub 2006/02/14. eng.PubMedGoogle Scholar
  34. 34.
    Giudice LC, Irwin JC, Dsupin BA, Pannier EM, Jin IH, Vu TH, et al. Insulin-like growth factor (IGF), IGF binding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod. 1993;8(11):1796–806. PubMed PMID: 7507128. Epub 1993/11/01. eng.PubMedGoogle Scholar
  35. 35.
    Rutanen EM. Insulin-like growth factors and insulin-like growth factor binding proteins in the endometrium. Effect of intrauterine levonorgestrel delivery. Hum Reprod. 2000;15 Suppl 3:173–81. PubMed PMID: 11041233. Epub 2000/10/21. eng.PubMedGoogle Scholar
  36. 36.
    Hawsawi Y, El-Gendy R, Twelves C, Speirs V, Beattie J. Insulin-like growth factor—oestradiol crosstalk and mammary gland tumourigenesis. Biochim Biophys Acta. 2013;1836(2):345–53. PubMed PMID: 24189571. Epub 2013/11/06. eng.PubMedGoogle Scholar
  37. 37.
    Handwerger S. Clinical counterpoint: the physiology of placental lactogen in human pregnancy. Endocr Rev. 1991;12(4):329–36. PubMed PMID: 1662129.PubMedGoogle Scholar
  38. 38.
    Kedzia A, Tarka A, Petriczko E, Pruski D, Iwaniec K. Placental growth hormone (PGH), pituitary growth hormone (GH1), insulin-like growth factor (IGF-I) and ghrelin in pregnant women’s blood serum. Ginekol Pol. 2013;84(7):620–3. PubMed PMID: 24032274. Epub 2013/09/17. eng.PubMedGoogle Scholar
  39. 39.
    Romani W, Patrie J, Curl LA, Flaws JA. The correlations between estradiol, estrone, estriol, progesterone, and sex hormone-binding globulin and anterior cruciate ligament stiffness in healthy, active females. J Womens Health. 2003;12(3):287–98.Google Scholar
  40. 40.
    Kuijper EA, Ket JC, Caanen MR, Lambalk CB. Reproductive hormone concentrations in pregnancy and neonates: a systematic review. Reprod Biomed Online. 2013;27(1):33–63. PubMed PMID: 23669015. Epub 2013/05/15. eng.PubMedGoogle Scholar
  41. 41.
    Ciocca DR, Roig LM. Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr Rev. 1995;16(1):35–62. PubMed PMID: 7758432. Epub 1995/02/01. eng.PubMedGoogle Scholar
  42. 42.
    Balasch J. Sex steroids and bone: current perspectives. Hum Reprod Update. 2003;9(3):207–22. PubMed PMID: 12859043. Epub 2003/07/16. eng.PubMedGoogle Scholar
  43. 43.
    Jarvinen TL, Kannus P, Sievanen H. Estrogen and bone—a reproductive and locomotive perspective. J Bone Miner Res. 2003;18(11):1921–31. PubMed PMID: 14606503. Epub 2003/11/11. eng.PubMedGoogle Scholar
  44. 44.
    Liu SH, al-Shaikh R, Panossian V, Yang RS, Nelson SD, Soleiman N, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res. 1996;14(4):526–33. PubMed PMID: 8764860. Epub 1996/07/01. eng.PubMedGoogle Scholar
  45. 45.
    Boyan BD, Hart DA, Enoka RM, Nicolella DP, Resnick E, Berkley KJ, et al. Hormonal modulation of connective tissue homeostasis and sex differences in risk for osteoarthritis of the knee. Biol Sex Differ. 2013;4(1):3. PubMed PMID: 23374322. Pubmed Central PMCID: PMC3583799. Epub 2013/02/05. eng.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Silman AJ, Newman J. Obstetric and gynaecological factors in susceptibility to peripheral joint osteoarthritis. Ann Rheum Dis. 1996;55(9):671–3. PubMed PMID: 8882147. Pubmed Central PMCID: Pmc1010274. Epub 1996/09/01. eng.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Linn S, Murtaugh B, Casey E. Role of sex hormones in the development of osteoarthritis. PM R. 2012;4(5 Suppl):S169–73. PubMed PMID: 22632696. Epub 2012/06/01. eng.PubMedGoogle Scholar
  48. 48.
    Wardhana SEE, Datau EA, Ongkowijaya J, Karema-Kaparang AM. Transdermal bio-identical progesterone cream as hormonal treatment for osteoarthritis. Acta Med Indones. 2013;45(3):224–32. PubMed PMID: 24045394. Epub 2013/09/21. eng.PubMedGoogle Scholar
  49. 49.
    Wild CY, Steele JR, Munro BJ. Why do girls sustain more anterior cruciate ligament injuries than boys?: a review of the changes in estrogen and musculoskeletal structure and function during puberty. Sports Med. 2012;42(9):733–49.PubMedGoogle Scholar
  50. 50.
    Yu WD, Panossian V, Hatch JD, Liu SH, Finerman GA. Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop Relat Res. 2001;383:268–81. PubMed PMID: 11210964. Epub 2001/02/24. eng.PubMedGoogle Scholar
  51. 51.
    Yu WD, Liu SH, Hatch JD, Panossian V, Finerman GA. Effect of estrogen on cellular metabolism of the human anterior cruciate ligament. Clin Orthop Relat Res. 1999;366:229–38. PubMed PMID: 10627740. Epub 2000/01/11. eng.PubMedGoogle Scholar
  52. 52.
    Dragoo JL, Lee RS, Benhaim P, Finerman GA, Hame SL. Relaxin receptors in the human female anterior cruciate ligament. Am J Sports Med. 2003;31(4):577–84. PubMed PMID: 12860548. Epub 2003/07/16. eng.PubMedGoogle Scholar
  53. 53.
    Beynnon BD, Bernstein IM, Belisle A, Brattbakk B, Devanny P, Risinger R, et al. The effect of estradiol and progesterone on knee and ankle joint laxity. Am J Sports Med. 2005;33(9):1298–304. PubMed PMID: 16002485.PubMedGoogle Scholar
  54. 54.
    Pollard CD, Braun B, Hamill J. Influence of gender, estrogen and exercise on anterior knee laxity. Clin Biomech (Bristol, Avon). 2006;21(10):1060–6. PubMed PMID: 16949187.Google Scholar
  55. 55.
    Park SK, Stefanyshyn DJ, Ramage B, Hart DA, Ronsky JL. Alterations in knee joint laxity during the menstrual cycle in healthy women leads to increases in joint loads during selected athletic movements. Am J Sports Med. 2009;37(6):1169–77. PubMed PMID: 19289541.PubMedGoogle Scholar
  56. 56.
    Shultz SJ, Gansneder BM, Sander TC, Kirk SE, Perrin DH. Absolute serum hormone levels predict the magnitude of change in anterior knee laxity across the menstrual cycle. J Orthop Res. 2005;24(2):124–31.Google Scholar
  57. 57.
    Slauterbeck J, Clevenger C, Lundberg W, Burchfield DM. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J Orthop Res. 1999;17(3):405–8. PubMed PMID: 10376730. Epub 1999/06/22. eng.PubMedGoogle Scholar
  58. 58.
    Liu SH, Al-Shaikh RA, Panossian V, Finerman GA, Lane JM. Estrogen affects the cellular metabolism of the anterior cruciate ligament. A potential explanation for female athletic injury. Am J Sports Med. 1997;25(5):704–9. PubMed PMID: 9302481. Epub 1997/09/26. eng.PubMedGoogle Scholar
  59. 59.
    Hattori K, Sano H, Komatsuda T, Saijo Y, Sugita T, Itoi E. Effect of estrogen on tissue elasticity of the ligament proper in rabbit anterior cruciate ligament: measurements using scanning acoustic microscopy. J Orthop Sci. 2010;15(4):584–8. PubMed PMID: 20721729.PubMedGoogle Scholar
  60. 60.
    Beynnon BD, Johnson RJ, Braun S, Sargent M, Bernstein IM, Skelly JM, et al. The relationship between menstrual cycle phase and anterior cruciate ligament injury: a case-control study of recreational alpine skiers. Am J Sports Med. 2006;34(5):757–64. PubMed PMID: 16436538.PubMedGoogle Scholar
  61. 61.
    Slauterbeck JR, Fuzie SF, Smith MP, Clark RJ, Xu KT, Starch DW, et al. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train. 2002;37(3):275.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50. PubMed PMID: 10874221. Epub 2000/06/30. eng.PubMedGoogle Scholar
  63. 63.
    Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S, et al. Risk factors for anterior cruciate ligament injury: a review of the literature-part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health. 2012;4(2):155–61. PubMed PMID: 23016083. Pubmed Central PMCID: 3435909.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Arnold C, Van Bell C, Rogers V, Cooney T. The relationship between serum relaxin and knee joint laxity in female athletes. Orthopedics. 2002;25(6):669–73. PubMed PMID: 12083578. Epub 2002/06/27. eng.PubMedGoogle Scholar
  65. 65.
    Dragoo JL, Padrez K, Workman R, Lindsey DP. The effect of relaxin on the female anterior cruciate ligament: analysis of mechanical properties in an animal model. Knee. 2009;16(1):69–72. PubMed PMID: 18964043.PubMedGoogle Scholar
  66. 66.
    Dragoo JL, Castillo TN, Braun HJ, Ridley BA, Kennedy AC, Golish SR. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med. 2011;39(10):2175–80. PubMed PMID: 21737831.PubMedGoogle Scholar
  67. 67.
    Faryniarz DA, Bhargava M, Lajam C, Attia ET, Hannafin JA. Quantitation of estrogen receptors and relaxin binding in human anterior cruciate ligament fibroblasts. In Vitro Cell Dev Biol Anim. 2006;42(7):176–81. PubMed PMID: 16948498. Epub 2006/09/05. eng.PubMedGoogle Scholar
  68. 68.
    Lovering RM, Romani WA. Effect of testosterone on the female anterior cruciate ligament. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R15–22. PubMed PMID: 15790748. Epub 2005/03/26. eng.PubMedGoogle Scholar
  69. 69.
    Shultz SJ, Wideman L, Montgomery MM, Beasley KN, Nindl BC. Changes in serum collagen markers, IGF-I, and knee joint laxity across the menstrual cycle. J Orthop Res. 2012;30(9):1405–12. PubMed PMID: 22389002. Pubmed Central PMCID: PMC3371148. Epub 2012/03/06. eng.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Charlton WP, Coslett-Charlton LM, Ciccotti MG. Correlation of estradiol in pregnancy and anterior cruciate ligament laxity. Clin Orthop Relat Res. 2001;387:165–70. PubMed PMID: 11400878. Epub 2001/06/13. eng.PubMedGoogle Scholar
  71. 71.
    Marnach ML, Ramin KD, Ramsey PS, Song SW, Stensland JJ, An KN. Characterization of the relationship between joint laxity and maternal hormones in pregnancy. Obstet Gynecol. 2003;101(2):331–5. PubMed PMID: 12576258. Epub 2003/02/11. eng.PubMedGoogle Scholar
  72. 72.
    Vullo VJ, Richardson JK, Hurvitz EA. Hip, knee, and foot pain during pregnancy and the postpartum period. J Fam Pract. 1996;43(1):63–8. PubMed PMID: 8691182. Epub 1996/07/01. eng.PubMedGoogle Scholar
  73. 73.
    Wijnhoven HA, de Vet HC, Smit HA, Picavet HS. Hormonal and reproductive factors are associated with chronic low back pain and chronic upper extremity pain in women–the MORGEN study. Spine (Phila Pa 1976). 2006;31(13):1496–502. PubMed PMID: 16741461. Epub 2006/06/03. eng.Google Scholar
  74. 74.
    Samuel CS, Coghlan JP, Bateman JF. Effects of relaxin, pregnancy and parturition on collagen metabolism in the rat pubic symphysis. J Endocrinol. 1998;159(1):117–25. PubMed PMID: 9795349.PubMedGoogle Scholar
  75. 75.
    Hall K. The symphysis pubis in mice in which pregnancy was maintained after ovariectomy by injecting progesterone alone or with oestradiol and relaxin. J Physiol. 1956;134(2):3P. PubMed PMID: 13398929.PubMedGoogle Scholar
  76. 76.
    Blecher AM, Richmond JC. Transient laxity of an anterior cruciate ligament-reconstructed knee related to pregnancy. Arthroscopy. 1998;14(1):77–9. PubMed PMID: 9486338. Epub 1998/03/05. eng.PubMedGoogle Scholar
  77. 77.
    Bryant AL, Crossley KM, Bartold S, Hohmann E, Clark RA. Estrogen-induced effects on the neuro-mechanics of hopping in humans. Eur J Appl Physiol. 2011;111(2):245–52. PubMed PMID: 20857138.PubMedGoogle Scholar
  78. 78.
    Lemoine S, Granier P, Tiffoche C, Rannou-Bekono F, Thieulant ML, Delamarche P. Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc. 2003;35(3):439–43. PubMed PMID: 12618573.PubMedGoogle Scholar
  79. 79.
    Wiik A, Glenmark B, Ekman M, Esbjornsson-Liljedahl M, Johansson O, Bodin K, et al. Oestrogen receptor beta is expressed in adult human skeletal muscle both at the mRNA and protein level. Acta Physiol Scand. 2003;179(4):381–7. PubMed PMID: 14656376. Epub 2003/12/06. eng.PubMedGoogle Scholar
  80. 80.
    Wiik A, Ekman M, Morgan G, Johansson O, Jansson E, Esbjornsson M. Oestrogen receptor beta is present in both muscle fibres and endothelial cells within human skeletal muscle tissue. Histochem Cell Biol. 2005;124(2):161–5. PubMed PMID: 16133122. Epub 2005/09/01. eng.PubMedGoogle Scholar
  81. 81.
    Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S. Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab. 2004;89(10):5245–55. PubMed PMID: 15472231. Epub 2004/10/09. eng.PubMedGoogle Scholar
  82. 82.
    Bryant AL, Clark RA, Bartold S, Murphy A, Bennell KL, Hohmann E, et al. Effects of estrogen on the mechanical behavior of the human Achilles tendon in vivo. J Appl Physiol. 2008;105(4):1035–43. PubMed PMID: 18566188. Epub 2008/06/21. eng.PubMedGoogle Scholar
  83. 83.
    Bell DR, Blackburn JT, Norcorss MF, Ondrak KS, Hudson JD, Hackney AC, et al. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):361–7. PubMed PMID: 21695466. Epub 2011/06/23. eng.PubMedGoogle Scholar
  84. 84.
    Eiling E, Bryant AL, Petersen W, Murphy A, Hohmann E. Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc. 2007;15(2):126–32. PubMed PMID: 16821077.PubMedGoogle Scholar
  85. 85.
    Hansen M, Koskinen SO, Petersen SG, Doessing S, Frystyk J, Flyvbjerg A, et al. Ethinyl oestradiol administration in women suppresses synthesis of collagen in tendon in response to exercise. J Physiol. 2008;586(Pt 12):3005–16. PubMed PMID: 18420709. Pubmed Central PMCID: 2517199.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Casey E, Hameed F, Dhaher YY. The muscle stretch reflex throughout the menstrual cycle. Med Sci Sports Exerc. 2014;46(3):600–9. PubMed PMID: 24091990. Pubmed Central PMCID: Pmc3944642. Epub 2013/10/05. eng.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Hansen M, Couppe C, Hansen CS, Skovgaard D, Kovanen V, Larsen JO, et al. Impact of oral contraceptive use and menstrual phases on patellar tendon morphology, biochemical composition, and biomechanical properties in female athletes. J Appl Physiol. 2013;114(8):998–1008.PubMedGoogle Scholar
  88. 88.
    Burgess KE, Pearson SJ, Onambélé GL. Patellar tendon properties with fluctuating menstrual cycle hormones. J Strength Cond Res. 2010;24(8):2088–95.PubMedGoogle Scholar
  89. 89.
    Hansen M, Langberg H, Holm L, Miller BF, Petersen SG, Doessing S, et al. Effect of administration of oral contraceptives on the synthesis and breakdown of myofibrillar proteins in young women. Scand J Med Sci Sports. 2011;21(1):62–72. PubMed PMID: 19883384.PubMedGoogle Scholar
  90. 90.
    Dedrick GS, Sizer PS, Merkle JN, Hounshell TR, Robert-McComb JJ, Sawyer SF, et al. Effect of sex hormones on neuromuscular control patterns during landing. J Electromyogr Kinesiol. 2008;18(1):68–78. PubMed PMID: 17079166.PubMedGoogle Scholar
  91. 91.
    Pearson SJ, Burgess KE, Onambele GL. Serum relaxin levels affect the in vivo properties of some but not all tendons in normally menstruating young women. Exp Physiol. 2011;96(7):681–8. PubMed PMID: 21478257. Epub 2011/04/12. eng.PubMedGoogle Scholar
  92. 92.
    Rahman F, Christian HC. Non-classical actions of testosterone: an update. Trends Endocrinol Metab. 2007;18(10):371–8. PubMed PMID: 17997105.PubMedGoogle Scholar
  93. 93.
    Smith SS, Woolley CS. Cellular and molecular effects of steroid hormones on CNS excitability. Cleve Clin J Med. 2004;71 Suppl 2:S4–10. PubMed PMID: 15379294. Epub 2004/09/24. eng.PubMedGoogle Scholar
  94. 94.
    Finocchi C, Ferrari M. Female reproductive steroids and neuronal excitability. Neurol Sci. 2011;32 Suppl 1:S31–5. PubMed PMID: 21533709. Epub 2011/05/06. eng.PubMedGoogle Scholar
  95. 95.
    Papka RE, Srinivasan B, Miller KE, Hayashi S. Localization of estrogen receptor protein and estrogen receptor messenger RNA in peripheral autonomic and sensory neurons. Neuroscience. 1997;79(4):1153–63. PubMed PMID: 9219974. Epub 1997/08/01. eng.PubMedGoogle Scholar
  96. 96.
    Cardona-Rossinyol A, Mir M, Caraballo-Miralles V, Llado J, Olmos G. Neuroprotective effects of estradiol on motoneurons in a model of rat spinal cord embryonic explants. Cell Mol Neurobiol. 2013;33(3):421–32. PubMed PMID: 23322321. Epub 2013/01/17. eng.PubMedGoogle Scholar
  97. 97.
    Vanderhorst VG, Terasawa E, Ralston 3rd HJ. Estrogen receptor-alpha immunoreactive neurons in the brainstem and spinal cord of the female rhesus monkey: species-specific characteristics. Neuroscience. 2009;158(2):798–810. PubMed PMID: 18996446. Epub 2008/11/11. eng.PubMedGoogle Scholar
  98. 98.
    Labombarda F, Meffre D, Delespierre B, Krivokapic-Blondiaux S, Chastre A, Thomas P, et al. Membrane progesterone receptors localization in the mouse spinal cord. Neuroscience. 2010;166(1):94–106. PubMed PMID: 20025939. Epub 2009/12/23. eng.PubMedGoogle Scholar
  99. 99.
    Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. Relaxin-3 systems in the brain—the first 10 years. J Chem Neuroanat. 2011;42(4):262–75. PubMed PMID: 21693186. Epub 2011/06/23. eng.PubMedGoogle Scholar
  100. 100.
    Callander GE, Bathgate RA. Relaxin family peptide systems and the central nervous system. Cell Mol Life Sci. 2010;67(14):2327–41. PubMed PMID: 20213277. Epub 2010/03/10. eng.PubMedGoogle Scholar
  101. 101.
    Wilson RE, Coons KD, Sengelaub DR. Neuroprotective effects of testosterone on dendritic morphology following partial motoneuron depletion: efficacy in female rats. Neurosci Lett. 2009;465(2):123–7. PubMed PMID: 19735695. Pubmed Central PMCID: PMC2755210. Epub 2009/09/09. eng.PubMedCentralPubMedGoogle Scholar
  102. 102.
    MacLennan AH, Nicolson R, Green RC. Serum relaxin in pregnancy. Lancet. 1986;2(8501):241–3. PubMed PMID: 2874276.PubMedGoogle Scholar
  103. 103.
    MacLennan AH. The role of the hormone relaxin in human reproduction and pelvic girdle relaxation. Scand J Rheumatol Suppl. 1991;88:7–15. PubMed PMID: 2011710. Epub 1991/01/01. eng.PubMedGoogle Scholar
  104. 104.
    Petersen LK, Hvidman L, Uldbjerg N. Normal serum relaxin in women with disabling pelvic pain during pregnancy. Gynecol Obstet Invest. 1994;38(1):21–3. PubMed PMID: 7959320.PubMedGoogle Scholar
  105. 105.
    Bjorklund K, Bergstrom S, Nordstrom ML, Ulmsten U. Symphyseal distention in relation to serum relaxin levels and pelvic pain in pregnancy. Acta Obstet Gynecol Scand. 2000;79(4):269–75. PubMed PMID: 10746841. Epub 2000/04/04. eng.PubMedGoogle Scholar
  106. 106.
    Schned ES. DeQuervain tenosynovitis in pregnant and postpartum women. Obstet Gynecol. 1986;68(3):411–4. PubMed PMID: 3488531. Epub 1986/09/01. eng.PubMedGoogle Scholar
  107. 107.
    Massey EW. Carpal tunnel syndrome in pregnancy. Obstet Gynecol Surv. 1978;33(3):145–8. PubMed PMID: 343016. Epub 1978/03/01. eng.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Spine and Sports Medicine, Physical Medicine and RehabilitationNorthwestern University Feinberg School of Medicine/Rehabilitation Institute of ChicagoChicagoUSA
  2. 2.Department of Family, Community and Preventive Medicine, Sports Medicine FellowshipCollege of Medicine, Drexel UniversityPhiladelphiaUSA

Personalised recommendations