EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications

  • Peter Bastian
  • Christian Engwer
  • Dominik Göddeke
  • Oleg Iliev
  • Olaf Ippisch
  • Mario Ohlberger
  • Stefan Turek
  • Jorrit Fahlke
  • Sven Kaulmann
  • Steffen Müthing
  • Dirk Ribbrock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8806)

Abstract

In the EXA-DUNE project we strive to (i) develop and implement numerical algorithms for solving PDE problems efficiently on heterogeneous architectures, (ii) provide corresponding domain-specific abstractions that allow application scientists to effectively use these methods, and (iii) demonstrate performance on porous media flow problems. In this paper, we present first results on the hybrid parallelisation of sparse linear algebra, system and RHS assembly, the implementation of multiscale finite element methods and the SIMD performance of high-order discontinuous Galerkin methods within an application scenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, F., Haasdonk, B., Kaulmann, S., Ohlberger, M.: The localized reduced basis multiscale method. In: Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, pp. 393–403 (2012)Google Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. part II: Implementation and tests in DUNE. Computing 82(2-3), 121–138 (2008)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. part I: Abstract framework. Computing 82(2-3), 103–119 (2008)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Choi, J., Singh, A., Vuduc, R.: Model-driven autotuning of sparse matrix-vector multiply on GPUs. In: Principles and Practice of Parallel Programming, pp. 115–126 (2010)Google Scholar
  5. 5.
    Engwer, C., Fahlke, J.: Scalable hybrid parallelization strategies for the DUNE grid interface. In: Proceedings of ENUMATH 2013 (2014)Google Scholar
  6. 6.
    Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA Journal of Numerical Analysis 29(2), 235–256 (2009)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Kretz, M., Lindenstruth, V.: Vc: A C++ library for explicit vectorization. Software: Practice and Experience 42(11), 1409–1430 (2012)Google Scholar
  8. 8.
    Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse matrix data format for modern processors with wide SIMD units. SIAM Journal on Scientific Computing 36(5), C401–C423 (2014)Google Scholar
  9. 9.
    Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Computers & Fluids 63, 135–147 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Melenk, J., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast quadrature. Computer Methods in Applied Mechanics and Engineering 190(32-33), 4339–4364 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Müthing, S., Ribbrock, D., Göddeke, D.: Integrating multi-threading and accelerators into DUNE-ISTL. In: Proceedings of ENUMATH 2013 (2014)Google Scholar
  12. 12.
    Ohlberger, M.: Error control based model reduction for multiscale problems. In: Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, pp. 1–10. Slovak University of Technology in Bratislava, Publishing House of STU (2012)Google Scholar
  13. 13.
    Riaz, A., Hesse, M., Tchelepi, H., Orr, F.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics 548, 87–111 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Shu, C.: Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing 9, 1073–1084 (1988)CrossRefMATHGoogle Scholar
  15. 15.
    Turek, S., Göddeke, D., Becker, C., Buijssen, S., Wobker, S.: FEAST – Realisation of hardware-oriented numerics for HPC simulations with finite elements. Concurrency and Computation: Practice and Experience 22(6), 2247–2265 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Bastian
    • 1
  • Christian Engwer
    • 2
  • Dominik Göddeke
    • 3
  • Oleg Iliev
    • 4
  • Olaf Ippisch
    • 5
  • Mario Ohlberger
    • 2
  • Stefan Turek
    • 3
  • Jorrit Fahlke
    • 2
  • Sven Kaulmann
    • 2
  • Steffen Müthing
    • 1
  • Dirk Ribbrock
    • 3
  1. 1.Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
  2. 2.Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
  3. 3.Department of MathematicsTU DortmundDortmundGermany
  4. 4.Fraunhofer Institute for Industrial Mathematics ITWMKaiserslauternGermany
  5. 5.Institut für MathematikTU Clausthal-ZellerfeldClausthal-ZellerfeldGermany

Personalised recommendations