Climate Change Influence on Migration of Contaminants in the Arctic Marine Environment

Chapter

Abstract

The Arctic is particularly vulnerable to environmental changes connected to climate change. Most of assessments of the climate change impact to the Arctic environment concentrate on direct effects to the marine and terrestrial ecosystems. There is little understanding of numerous indirect effects of global change and their impact on cycle of different compounds e.g. man-made substances. The global change effects will not always be predictable but may be abrupt. Environmental changes connected to climate change will influence contaminant transport and migration within the Arctic marine ecosystem. Main effects of global change will be visible through changes of large scale contaminant transport pathways e.g. air mass transport, ice transport, marine currents transport and the changes of in situ environmental conditions e.g. changes of pH, temperature, oxygen content. In this review article we describe major environmental factors that may influence global transport of contaminants and migration of contaminants within the arctic ecosystem elements. We also discuss possible further changes in contaminant sources and distribution within the Arctic related to global changes.

References

  1. Abram NJ, Wolff EW, Curran MAJ (2013) A review of sea ice proxy information from polar ice cores. Quat Sci Rev 79:168–183CrossRefGoogle Scholar
  2. Amundsen I, Iosjpe M, Reistad O et al (2002) The accidental sinking of the nuclear submarine, the Kursk: monitoring of radioactivity and the preliminary assessment of the potential impact of radioactive releases. Mar Pollut Bull 44(6):459–468CrossRefGoogle Scholar
  3. Arora VK, Boer GJ (2001) Effects of simulated climate change on the hydrology of major river basins. J Geophys Res. doi:10.1029/2000JD900620
  4. Bard SM (1999) Global transport of anthropogenic contaminants and the consequences for the Arctic marine ecosystem. Mar Pollut Bull 38(5):356–379CrossRefGoogle Scholar
  5. Biester H, Cortizas MA, Birkenstock S et al (2003) Effect of peat decomposition and mass loss on historic mercury records in peat bogs from Patagonia. Environ Sci Technol 37:32–39CrossRefGoogle Scholar
  6. Bindler R, Klarqvist M, Klaminder J et al (2004) Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. Glob Biogeochem Cycles 18(3). doi:10.1029/2004GB002270
  7. Blais JM, Kimpe LE, McMahon D et al (2005) Arctic seabirds transport marine-derived contaminants. Science 309:445CrossRefGoogle Scholar
  8. Borga K, Poltermann M, Polder A et al (2002) Influence of diet and sea ice drift on organochlorine bioaccumulation in Arctic ice-associated amphipods. Environ Pollut 117:47–60CrossRefGoogle Scholar
  9. Brillas E (2014) A review on the degradation of organic pollutants in waters by UV photoelectro-fenton and solar photoelectro-fenton. J Braz Chem Soc 25(3):393–417Google Scholar
  10. Brunström B, Halldin K (2000) Ecotoxicological risk assessment of environmental pollutants in the Arctic. Toxicol Lett 112–113:111–118CrossRefGoogle Scholar
  11. Choppin GR, Morgenstern A (2001) Distribution and movement of environmental plutonium. Radioact Environ 1:91–105CrossRefGoogle Scholar
  12. Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30(1):1–25CrossRefGoogle Scholar
  13. Coats JR (1993) What happens to degradable pesticides? ChemTech 5:25–29Google Scholar
  14. Crane K, Galasso J, Brown C et al (2000) Northern ocean inventories of radionuclide contamination: GIS efforts to determine the past and present state of the environment in and adjacent to the Arctic. Mar Pollut Bull 40(10):853–868CrossRefGoogle Scholar
  15. Dąbrowska D, Kot-Wasik A, Namieśnik J (2004) The importance of degradation in the fate of selected organic compounds in the environment. Part II. Photodegradation and biodegradation. Pol J Environ Stud 13(6):617–626Google Scholar
  16. Dowdall M, Vicat K, Frearson I, Gerland S, Lind B, Shaw G (2004) Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-Alesund, Svalbard. J Environ Radioact 71(2):101–114CrossRefGoogle Scholar
  17. Elberling B, Asmund G, Kunzendorf H, Krogstad EJ (2002) Geochemical trends in metal-contaminated fiord sediments near a former lead–zinc mine in West Greenland. Appl Geochem 17:493–502CrossRefGoogle Scholar
  18. Efurd DW, Steiner RE, Roensch FR et al (2005) Determination of the 240Pu/239Pu atom ratio in global fallout at two locations in the Northern Hemisphere. J Radioanal Nucl Chem 263(2):387–391CrossRefGoogle Scholar
  19. Eurasia Group Report (2013) Opportunities and challenges for Arctic oil and gas development. Report for Wilson Center, Washington DC. http://www.wilsoncenter.org/sites/default/files/Artic%20Report_F2.pdf
  20. Eriksen DØ, Sidhu R, Ramsøy T et al (2009) Radioactivity in produced water from Norwegian oil and gas installations—concentrations, bioavailability, and doses to marine biota. Radioprotection 44(5):869–874CrossRefGoogle Scholar
  21. Evenset A, Christensen GN, Skotvold T et al (2004) A comparison of organic contaminants in two high Arctic lake ecosystems, Bjbrnbya (Bear Island), Norway. Sci Total Environ 318:125–141Google Scholar
  22. Falk-Petersen S, Sargent JR, Tande K (1987) Food pathways and life strategy in relation to the lipid composition of sub-Arctic zooplankton. Polar Biol 8:115–120CrossRefGoogle Scholar
  23. Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12CrossRefGoogle Scholar
  24. Gallagher DI, Dietrich AM, Reay WG et al (1996) Ground water discharge of agricultural pesticides and nutrients to estuarine surface water. Ground Water Monit Rem 16:118–129CrossRefGoogle Scholar
  25. Gao Y, Drange H, Bentsen M, Johannessen OM (2004) Simulating transport of non-chernobyl 137Cs and 90Sr in the North Atlantic–Arctic region. J Environ Radioact 71:1–16Google Scholar
  26. Gobas FAPC (1993) A model for predicting the bioaccumulation hydrophobic organic chemicals in aquatic food-webs: application to lake Ontario. Ecol Model 69:1–17CrossRefGoogle Scholar
  27. Gobeil C, Macdonald RW, Smith JN et al (2001) Lead contamination in Arctic basin sediments tracks Atlantic water flow pathways. Science 293:1301–1304CrossRefGoogle Scholar
  28. Gordeev VV (2002) Pollution of the Arctic. Reg Environ Change 3:88–98. doi:10.1007/s10113-002-0041-4 CrossRefGoogle Scholar
  29. Gorham E (1991) The role of northern peatlands in the carbon cycle, and their probable response to climate warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  30. Grigoriev MN, Rachold V (2003) The degradation of coastal permafrost and the organic carbon balance of the Laptev and East Siberian Seas. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost. Swets & Zeitlinger, LisseGoogle Scholar
  31. Hall LW, Anderson RD (1995) The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit Rev Toxicol 25(4):281–346CrossRefGoogle Scholar
  32. Halsall CJ (2004) Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack. Environ Pollut 128(1–2):163–175. doi:10.1016/j.envpol.2003.08.026 CrossRefGoogle Scholar
  33. Halsall CJ, Sweetman AJ, Barrie LA, Jones KC (2001) Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmos Environ 35:255–267CrossRefGoogle Scholar
  34. Halsall CJ, Bailey R, Stern GA et al (1998) Multi-year observations of organohalogen pesticides in the Arctic atmosphere. Environ Pollut 102:51–62CrossRefGoogle Scholar
  35. Harms IH, Karcher MJ, Dethleff D (2000) Modelling Siberian river runoff—implications for contaminant transport in the Arctic Ocean. J Mar Syst 27:95–115CrossRefGoogle Scholar
  36. Hurrell JW, Deaer C (2010) North Atlantic climate variability: the role of the north Atlantic oscillation. J Mar Syst 79:231–244CrossRefGoogle Scholar
  37. Hop H, Pavlova O (2008) Distribution and biomass transport of ice-amphipods in Svalbard waters. Deep-Sea Res II 55(20–21):2292–2307. doi:10.1016/j.dsr2.2008.05.023 CrossRefGoogle Scholar
  38. Iosjpe M, Reistad O, Liland A (2011) Radioecological consequences after a hypothetical accident with release into the marine environment involving a Russian nuclear submarine in the Barents Sea. Strålevern Rapport 2011:3Google Scholar
  39. ITOPF (2014) Fate of marine oil spills. Technical information paper. http://www.itopf.com/knowledge-resources/documents-guides/document/tip-2-fate-of-marine-oil-spills/
  40. IPCC 2013: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 ppGoogle Scholar
  41. Johannessen OM, Bengtsson L, Miles MW et al (2004) Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus 56A:328–341CrossRefGoogle Scholar
  42. Johannessen OM, Volkov VA, Pettersson LH, Maderich VS, Zheleznyak MJ, Gao Y, Bobylev LP, Stepanov AV, Neelov IA, Tishkov VP and Nielsen SP (2010) Radioactivity and pollution in the Nordic seas and Arctic Region. observations, modeling and simulation. Springer, Nansen Center’s Polar Series, p 408Google Scholar
  43. Karcher M, Harms I, Standring WJF (2010) On the potential for climate change impacts on marine anthropogenic radioactivity in the Arctic regions. Mar Pollut Bull 60:1151–1159CrossRefGoogle Scholar
  44. Kuznetsov VM, Yablokov AV, Kolton IB et al (2004) Floating nuclear power plants in Russia: a threat to the Arctic, world oceans and non-proliferation treaty. Agenstwo Rakurs Production Moscow. http://www.greencross.ch/uploads/media/gc_fnpp_book.pdf
  45. Leontyev IO (2003) Modeling erosion of sedimentary coasts in the western Russian Arctic. Coast Eng 47:413–429CrossRefGoogle Scholar
  46. Lind OC, Oughton DH, Salbu B et al (2006) Transport of low Pu-240/Pu-239 atom ratio plutonium-species in the Ob and Yenisey Rivers to the Kara Sea. Earth Planet Sci Lett 251:33–43CrossRefGoogle Scholar
  47. Lohmann R, Breivik K, Dachs J et al (2007) Global fate of POPs: current and future research directions. Environ Pollut 150:150–165CrossRefGoogle Scholar
  48. Maccali J, Hillaire-Marcel C, Carignan J et al (2013) Geochemical signatures of sediments documenting Arctic sea-ice and water mass export through Fram Strait since the last glacial maximum. Quatern Sci Rev 64:136–151CrossRefGoogle Scholar
  49. Macdonald RW, Harner TT, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminants pathway and interpretation on temporal trend data. Sci Total Environ 342:5–86CrossRefGoogle Scholar
  50. Masqué P, Cochranb JK, Hirschberg DJ (2007) Radionuclides in Arctic sea ice: tracers of sources, fates and ice transit time scales. Deep-Sea Res I 54:1289–1310CrossRefGoogle Scholar
  51. Matishov GG, Matishov DG, Namiatov AE et al (2002) Radioactivity near the sunken submarine “Kursk” in the southern Barents. Sea Environ Sci Technol 36(9):1919–1922CrossRefGoogle Scholar
  52. McBean G, Alekseev G, Chen D (2004) Arctic climate: past and present, ACIA Chapter 2. http://www.acia.uaf.edu/PDFs/ACIA_Science_Chapters_Final/ACIA_Ch02_Final.pdf
  53. Melnikova S, Carrollb JJ, Gorshkov A (2003) Snow and ice concentrations of selected persistent pollutants in the Ob–Yenisey River watershed. Sci Total Environ 306:27–37CrossRefGoogle Scholar
  54. Mitchell PI, Battle JV, Ryan TP et al (1991) Studies on the speciation of plutonium and americium in the western Irish Sea. In: Kershaw PJ, Woodhead DS (eds) Radionuclides in the study of marine processes. Elsevier Applied Science, LondonGoogle Scholar
  55. Park J, Kim S, Yoo J et al (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531CrossRefGoogle Scholar
  56. Pavlov VK, Stanovoy VV (2001) The problem of Transfer of radionuclide pollution be sea ice. Mar Pollut Bull 42(4):319–323CrossRefGoogle Scholar
  57. Pfirman S, Lange MA, Wollenburg I et al (1990) Sea ice characteristics and the role of sediment inclusions in deepsea deposition: Arctic-Antarctic comparisons. Geological history of the polar oceans: Arctic versus Antarctic. Kluwer Academic Publishers, Dordrecht, pp 187–211CrossRefGoogle Scholar
  58. Pfirman SL, Kögeler JW, Rigor I (1997) Potential for rapid transport of contaminants from the Kara Sea. Sci Total Environ 202(1–3):111–122CrossRefGoogle Scholar
  59. Point D, Sonke JE, Day RD et al (2011) Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems. Nat Geosci 4:188–194CrossRefGoogle Scholar
  60. Pogrebov VB, Fokin SI, Galtsova VV et al (1997) Benthic communities as influenced by nuclear testing and radioactive waste disposal off Novaya Zemlya in the Russian Arctic. Mar Pollut Bull 35:333–339CrossRefGoogle Scholar
  61. Ramachandran SD, Sweezey MJ, Hodson PV et al (2006) Influence of salinity and fish species on PAH uptake from dispersed crude oil. Mar Pollut Bull 52(10):1182–1189CrossRefGoogle Scholar
  62. Rigor I, Colony R (1997) Sea-ice production and transport of pollutants in the Laptev Sea, 1979-1993. Sci Total Environ 202:89–110CrossRefGoogle Scholar
  63. Rigor I, Wallace JM (2004) Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys Res Lett 31:L09401CrossRefGoogle Scholar
  64. Romankevich EA, Vetrov AA (2001) Cycle of carbon in the Russian Arctic Seas. Nauka, Moscow, p 302 (in Russian)Google Scholar
  65. Rydberg J, Klaminder J, Rosén P et al (2010) Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. Sci Total Environ 408:4778–4783CrossRefGoogle Scholar
  66. Schiedek D, Sundelin B, Readman JW et al (2007) Interactions between climate change and contaminants. Mar Pollut Bull 54:1845–1856CrossRefGoogle Scholar
  67. Simoes JS, Zagorodnov VS (2001) The record of anthropogenic pollution in snow and ice in Svalbard, Norway. Atmos Environ 35:403–413CrossRefGoogle Scholar
  68. Skipperud L, Brown J, Fifield L et al (2009) Association of plutonium with sediments from the Ob and Yenisey Rivers and Estuaries. J Environ Radioact 4:290–300CrossRefGoogle Scholar
  69. Skipperud L, Oughton DH, Fifield LK et al (2004) Plutonium isotope ratios in the Yenisey and Ob estuaries. Appl Radiat Isot 60(2–4):589–593CrossRefGoogle Scholar
  70. Smith JN, Ellis KM, Kilius LR (1998) 129I and 137Cs tracer measurements in the Arctic Ocean. Deep-Sea Res I 45:959–984CrossRefGoogle Scholar
  71. Smith JN, Ellis KM, Polyak L et al (2000) 239,240Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaza Baz, Novaza Yemlza. Cont Shelf Res 20:255–279CrossRefGoogle Scholar
  72. Smith LC, Frey KE (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32. doi:10.1029/2004GL022025
  73. Sobek A, McLachlan MS, Borgå K et al (2010) A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web. Sci Total Environ 408:2753–2760CrossRefGoogle Scholar
  74. Stein R (2008) Arctic ocean sediments: processes, proxies, and paleo environment. developments in Marine Geology, vol 2. Elsevier, Amsterdam, p 592Google Scholar
  75. Stranne C, Björk G (2012) On the Arctic Ocean ice thickness response to changes in the external forcing. Clim Dyn 39:3007–3018. doi:10.1007/s00382-011-1275-y CrossRefGoogle Scholar
  76. Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34:L19404. doi:10.1029/2007GL031254 CrossRefGoogle Scholar
  77. Szymczycha B, Miotk M, Pempkowiak J (2013) Submarine groundwater discharge as a source of mercury in the Bay of Puck. Water Soil Air Pollut 224:1542. doi:10.1007/s11270-013-1542-0 CrossRefGoogle Scholar
  78. Thibodeaux LJ, Bierman VI (2003) The bioturbation-driven chemical release process. Environ Sci Technol 37(13):252–258. doi:10.1021/es032518j CrossRefGoogle Scholar
  79. Thomson J, Rogers WE (2014) Swell and sea in the emerging Arctic Ocean. Geophys Res Lett 41:3136–3140. doi:10.1002/2014GL059983 CrossRefGoogle Scholar
  80. Turetsky MR, Manning SW, Wieder RK (2004) Dating recent peat deposits. Wetlands 24:324–356CrossRefGoogle Scholar
  81. Turetsky MR, Wieder RK, Vitt DH et al (2007) The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes. Glob Change Biol 13:1922–1934CrossRefGoogle Scholar
  82. Vasiliev A, Kanevskiy M, Cherkashov G et al (2005) Coastal dynamics and the Barents and Kara Sea key sites. Geo-Mar Lett 25(2–3):110–120CrossRefGoogle Scholar
  83. Vavrus S, Harrison SP (2003) The impact of sea-ice dynamics on the Arctic climate system. Clim Dyn 20:741–757. doi:10.1007/s00382-003-0309-5 Google Scholar
  84. Vintró LL, McMahon CA, Mitchell PI et al (2002) Transport of plutonium in surface and sub-surface waters from the Arctic shelf to the North Pole via the Lomonosov Ridge. J Environ Radioact 60(1–2):73–89CrossRefGoogle Scholar
  85. Weeks W (1994) Possible roles of sea ice in the transport of hazardous material. Interagency Arctic Res Policy Committee 8:34–52Google Scholar
  86. Wania F, Su Y (2004) Quantifying the global fractionation of polychlorinated biphenyls. Ambio 33(3):161–168Google Scholar
  87. Wit CA, Muir D (2010) Levels and trends of new contaminants, temporal trends of legacy contaminants and effects of contaminants in the Arctic: preface. Sci Total Environ 408:2852–2853CrossRefGoogle Scholar
  88. Ytreberg E, Karlsson J, Ndungu K et al (2011) Influence of salinity and organic matter on the toxicity of Cu to a brackish water and marine clone of the red macroalga ceramium tenuicorne. Ecotoxicol Environ Saf 74:636–642CrossRefGoogle Scholar
  89. Zaborska A, Mietelski JW, Carroll J et al (2010) Sources and distributions of 137Cs, 238Pu, 239,240Pu radionuclides in the north-western Barents Sea. J Environ Radioact 101:323–331CrossRefGoogle Scholar
  90. Zaborska A, Carroll J, Pazdro K et al (2011) Spatio-temporal patterns of PAHs, PCBs and HCB in sediments of the western Barents Sea. Oceanologia 53(4):1005–1026CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Polish Academy of SciencesInstitute of OceanologySopotPoland
  2. 2.Centre for Polar StudiesNational Leading Research CentreSosnowiecPoland

Personalised recommendations