Quality Assessment of the Contributed Land Use Information from OpenStreetMap Versus Authoritative Datasets

  • Jamal Jokar ArsanjaniEmail author
  • Peter Mooney
  • Alexander Zipf
  • Anne Schauss
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Land use (LU) maps are an important source of information in academia and for policy-makers describing the usage of land parcels. A large amount of effort and monetary resources are spent on mapping LU features over time and at local, regional, and global scales. Remote sensing images and signal processing techniques, as well as land surveying are the prime sources to map LU features. However, both data gathering approaches are financially expensive and time consuming. But recently, Web 2.0 technologies and the wide dissemination of GPS-enabled devices boosted public participation in collaborative mapping projects (CMPs). In this regard, the OpenStreetMap (OSM) project has been one of the most successful representatives, providing LU features. The main objective of this paper is to comparatively assess the accuracy of the contributed OSM-LU features in four German metropolitan areas versus the pan-European GMESUA dataset as a reference. Kappa index analysis along with per-class user’s and producers’ accuracies are used for accuracy assessment. The empirical findings suggest OSM as an alternative complementary source for extracting LU information whereas exceeding 50 % of the selected cities are mapped by mappers. Moreover, the results identify which land types preserve high/moderate/low accuracy across cities for urban LU mapping. The findings strength the potential of collaboratively collected LU features for providing temporal LU maps as well as updating/enriching existing inventories. Furthermore, such a collaborative approach can be used for collecting a global coverage of LU information specifically in countries in which temporal and monetary efforts could be minimized.


Land use features Comparative assessment Global monitoring for environment and security urban atlas (GMESUA) OpenStreetMap Confusion matrix 



Jamal Jokar Arsanjani acknowledges the funding of the Alexander von Humboldt foundation.


  1. Arino O, Ramos Perez JJ, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009)Google Scholar
  2. Bakillah M, Lauer J, Liang SHL, Zipf A, Jokar Arsanjani J, Mobasheri A, Loos L (2014a) Exploiting big VGI to improve routing and navigation services. Big Data Tech Technol Geoinformatics 177–192Google Scholar
  3. Bakillah M, Liang S, Mobasheri A, Jokar Arsanjani J, Zipf A (2014b) Fine-resolution population mapping using OpenStreetMap points-of-interest. Int J Geogr Inf Sci 28: 1940–1963Google Scholar
  4. Birringer J (2008) Eye into Earth. Space Culture 11:59CrossRefGoogle Scholar
  5. Büttner G, Feranec J, Gabriel J (2002) Corine land cover update 2000Google Scholar
  6. Castelein W, Grus Ł, Crompvoets J, Bregt AA (2010) Characterization of volunteered geographic information. In: 13th AGILE international conference on geographic information science 2010, Guimarães, pp 1–10Google Scholar
  7. Cihlar J, Jansen LJM (2001) From land cover to land use: a methodology for efficient land use mapping over large areas. Prof Geogr 53:275–289CrossRefGoogle Scholar
  8. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  9. Comber A, See L, Fritz S, Van der Velde M, Perger C, Foody G (2013) Using control data to determine the reliability of volunteered geographic information about land cover. Int J Appl Earth Obs Geoinf 23:37–48CrossRefGoogle Scholar
  10. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  11. De Leeuw J, Said M, Ortegah L, Nagda S, Georgiadou Y, DeBlois M (2011) An assessment of the accuracy of volunteered road map production in western Kenya. Remote Sens 3:247–256CrossRefGoogle Scholar
  12. De Sherbinin A (2002) A CIESIN thematic guide to land land-use and land land-cover change (LUCC), NY, pp 10–20Google Scholar
  13. Devillers R, Bédard Y, Jeansoulin R, Moulin B (2007) Towards spatial data quality information analysis tools for experts assessing the fitness for use of spatial data. Int J Geogr Inf Sci 21:261–282CrossRefGoogle Scholar
  14. Ellis E (2007) Land-use and land-cover change. EarthGoogle Scholar
  15. Estima J, Painho M (2013) Exploratory analysis of OpenStreetMap for land use classification. In: Proceedings of the second ACM SIGSPATIAL international workshop on crowdsourced and volunteered geographic information GEOCROWD’13, ACM, New York pp 39–46Google Scholar
  16. European Union (2011) Mapping guide for a european urban atlasGoogle Scholar
  17. Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28:700–719CrossRefGoogle Scholar
  18. Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJournal 72:137–148CrossRefGoogle Scholar
  19. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201CrossRefGoogle Scholar
  20. Foody GM, See L, Fritz S, Van der Velde M, Perger C, Schill C, Boyd DS (2013) Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Trans GIS 17(6):847–860CrossRefGoogle Scholar
  21. Fritz S, Bartholomé E, Belward A, Hartley A, Stibig HJ, Eva H, Mayaux P, Bartalev S, Latifovic R, Kolmert S et al (2003) Harmonisation, mosaicing and production of the global land cover 2000 database (beta version). Office for Official Publications of the European Communities Luxembourg, LuxembourgGoogle Scholar
  22. Fritz S, Mccallum I, Schill C, Perger C, See L, Schepaschenko D, van der Velde M, Kraxner F, Obersteiner M (2012) Geo-Wiki: an online platform for improving global land cover. Environ Model Softw 31:110–123CrossRefGoogle Scholar
  23. Gervais M, Bédard Y, Levesque M, Bernier E, Devillers R (2009) Data quality issues and geographic knowledge discovery. Geogr Data Min Knowl Discov pp 99–115Google Scholar
  24. Goetz M, Zipf A (2010) Extending OpenStreetMap to indoor environments : bringing volunteered geographic information to the next level. CRC Press, DelftGoogle Scholar
  25. Goodchild MF (2007) Editorial: citizens as voluntary sensors: spatial data infrastructure in the world of web 2.0 2: 24–32Google Scholar
  26. Guptill SC, Morrison JL (1995) Elements of spatial data quality. Elsevier Science, OxfordGoogle Scholar
  27. Hagenauer J, Helbich M (2012) Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int J Geogr Inf Sci 26:963–982CrossRefGoogle Scholar
  28. Haklay M (2010) How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ Plan B Plan Des 37:682–703CrossRefGoogle Scholar
  29. Hecht R, Kunze C, Hahmann S (2013) Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int J Geo-Information 2:1066–1091CrossRefGoogle Scholar
  30. Helbich M, Amelunxen C, Neis P (2012) Comparative spatial analysis of positional accuracy of OpenStreetMap and proprietary Geodata. In: International GI_Forum, SalzburgGoogle Scholar
  31. Herold M, Mayaux P, Woodcock CE, Baccini A, Schmullius C (2008) Some challenges in global land cover mapping : an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens Environ 112:2538–2556CrossRefGoogle Scholar
  32. Hochmair HH, Zielstra D, Neis P (2014) Assessing the completeness of bicycle trail and lane features in OpenStreetMap for the United States. Trans GIS. doi: 10.1111/tgis.12081
  33. Jokar Arsanjani J, Helbich M, Bakillah M, Loos L (2015a) The emergence and evolution of OpenStreetMap: a cellular automata approach. Int J Digital Earth 8(1):74–88.
  34. Jokar Arsanjani J, Vaz E (2015b) An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int J Appl Earth Obs Geoinf 35:329–337CrossRefGoogle Scholar
  35. Jokar Arsanjani J, Helbich M, Bakillah M, Hagenauer J, Zipf A (2013) Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inf Sci 27:2264–2278CrossRefGoogle Scholar
  36. Jokar Arsanjani J, Mooney P, Helbich M, Zipf A (2015c) An exploration of future patterns of the contributions to OpenStreetMap and development of a Contribution Index, Trans GISGoogle Scholar
  37. Jokar Arsanjani J, Vaz E, Bakillah M, Mooney P (2014) Towards initiating OpenLandMap founded on citizens’ science: the current status of land use features of OpenStreetMap in Europe. In: Huerta Schade G (ed) Proceedings of the AGILE’2014 international conference on geographic information science, 3–6 June 2014, AGILE digital editions, CastellónGoogle Scholar
  38. Kandrika S, Roy PSS (2008) Land use land cover classification of Orissa using multi-temporal IRS-P6 Awifs data: a decision tree approach. Int J Appl Earth Obs Geoinf 10:186–193CrossRefGoogle Scholar
  39. Kasetkasem T, Arora MK, Varshney PK (2005) Super-resolution land cover mapping using a markov random field based approach. Remote Sens Environ 96:302–314CrossRefGoogle Scholar
  40. Kong F, Yin H, Nakagoshi N, James P (2012) Simulating urban growth processes incorporating a potential model with spatial metrics. Ecol Indic 20:82–91CrossRefGoogle Scholar
  41. Koukoletsos T, Haklay M, Ellul C (2012) Assessing data completeness of VGI through an automated matching procedure for linear data. Trans GIS 16(4):477–498CrossRefGoogle Scholar
  42. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  43. Ludwig I, Voss A, Krause-Traudes M (2011) A comparison of the street networks of Navteq and OSM in Germany. In: Geertman S, Reinhardt W, Toppen F (eds) Advancing geoinformation science for a changing world SE-4 lecture notes in Geoinformation and cartography. Springer, Berlin, pp 65–84CrossRefGoogle Scholar
  44. Mayaux P, Eva H, Gallego J, Strahler AH, Herold M, Member S, Agrawal S, Naumov S, De Miranda EE, Di Bella CM et al (2006) Validation of the global land cover 2000 map. IEEE Trans Geosci Remote Sens 44:1728–1739CrossRefGoogle Scholar
  45. McIver D, Friedl M (2002) Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens Environ 81:253–261CrossRefGoogle Scholar
  46. Mooney P, Corcoran P (2012) The Annotation Process in OpenStreetMap. Trans GIS 16:561–579Google Scholar
  47. Pacifici F, Chini M, Emery WJ (2009) A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens Environ 113:1276–1292CrossRefGoogle Scholar
  48. Paneque-Gálvez J, Mas J-F, Moré G, Cristóbal J, Orta-Martínez M, Luz AC, Guèze M, Macía MJ, Reyes-García V (2013) Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. Int J Appl Earth Obs Geoinf 23:372–383CrossRefGoogle Scholar
  49. Qi Z, Yeh AG-O, Li X, Lin Z (2012) A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens Environ 118:21–39CrossRefGoogle Scholar
  50. Ramm F (2014) OpenStreetMap data in layered GIS format
  51. Ramm F, Names I, Files SS, Catalogue F, Features P, Features N, Related T, Infrastructure T, Generation P, Features L, et al (2011) OpenStreetMap data in layered GIS format pp 1–21Google Scholar
  52. Roick O, Hagenauer J, Zipf A (2011) OSMatrix—grid-based analysis and visualization of OpenStreetMap. In: State of the map EU 2011, Vienna, AustriaGoogle Scholar
  53. Rouse LJ, Bergeron SJ, Harris TM (2007) Participating in the geospatial web: collaborative mapping, social networks and participatory GIS. In: Scharl A, Tochtermann K (eds) The geospatial web advanced information and knowledge processing. Springer, London, pp 153–158Google Scholar
  54. Saadat H, Adamowski J, Bonnell R, Sharifi F, Namdar M, Ale-Ebrahim S (2011) Land use and land cover classification over a large area in iran based on single date analysis of satellite imagery. ISPRS J Photogramm Remote Sens 66:608–619CrossRefGoogle Scholar
  55. See L, Comber A, Salk C, Fritz S, van der Velde M, Perger C, Schill C, McCallum I, Kraxner F, Obersteiner M (2013) Comparing the quality of crowdsourced data contributed by expert and non-experts. PLoS ONE 8:e69958CrossRefGoogle Scholar
  56. Seifert F (2009) Improving urban monitoring toward a European urban atlas. In: Global mapping of human settlement; remote sensing applications series. CRC Press, USAGoogle Scholar
  57. Sester M, Jokar Arsanjani J, Klammer R, Burghardt D, Haunert J-H (2014) Integrating and generalising volunteered geographic information. In: Burghardt D, Duchêne C, Mackaness W (eds) Abstracting geographic information in a data rich world, in series: lecture notes in geoinformation and cartography. Springer, Berlin, pp 119–155CrossRefGoogle Scholar
  58. Sexton JO, Urban DL, Donohue MJ, Song C (2013) Long-term land cover dynamics by multi-temporal classification across the landsat-5 record. Remote Sens Environ 128:246–258CrossRefGoogle Scholar
  59. Strahler AH, Boschetti L, Foody GM, Friedl MA, Hansen MC, Herold M, Mayaux P, Morisette JT, Stehman SV, Woodcock CE (2006) Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps. Office for Official Publications of the European Communities, LuxemburgGoogle Scholar
  60. Thenkabail PS, Schull M, Turral H (2005) Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens Environ 95:317–341CrossRefGoogle Scholar
  61. Van Oort P (2006) Spatial data quality: from description to application. Wageningen UniversityGoogle Scholar
  62. Vaz E, Nijkamp P, Painho M, Caetano M (2012) A multi-scenario forecast of urban change: a study on urban growth in the Algarve. Landsc Urban Plan 104:201–211CrossRefGoogle Scholar
  63. Vaz E, Walczynska A, Nijkamp P (2013) Regional challenges in tourist wetland systems: an integrated approach to the Ria Formosa in the Algarve, Portugal. Reg Environ Change 13:33–42CrossRefGoogle Scholar
  64. Wästfelt A, Arnberg W (2013) Local spatial context measurements used to explore the relationship between land cover and land use functions. Int J Appl Earth Obs Geoinf 23:234–244CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jamal Jokar Arsanjani
    • 1
    Email author
  • Peter Mooney
    • 2
  • Alexander Zipf
    • 1
  • Anne Schauss
    • 1
  1. 1.GIScience Research Group, Institute of GeographyHeidelberg UniversityHeidelbergGermany
  2. 2.Department of Computer ScienceMaynooth UniversityMaynoothIreland

Personalised recommendations