Advertisement

Investigating the Potential of OpenStreetMap for Land Use/Land Cover Production: A Case Study for Continental Portugal

  • Jacinto Estima
  • Marco Painho
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In the last decade, volunteers have been contributing massively to what we know nowadays as Volunteered Geographic Information (VGI). Through the research that has been conducted recently, it has become clear that this huge amount of information might hide interesting and rich geographical information. The OpenStreetMap (OSM) project is one of the most well-known and studied VGI initiatives. It has been studied to identify its potential for different applications. In the field of Land Use/Cover, an earlier study by the authors explored the use of OSM for Land Use/Cover (LULC) validation. Using the COoRdination of INformation on the Environment (CORINE) Land Cover (CLC) database as the Land Use reference data, they analyzed the OSM coverage and classification accuracy, finding an interesting global accuracy value of 76.7 % for level 1 land classes, for the study area of continental Portugal, despite a very small coverage value of approximately 3.27 %. In this chapter we review the existing literature on using OSM data for LULC database production and move this research forwards by exploring the suitability of the OSM Points of Interest dataset. We conclude that OSM can give very interesting contributions and that the OSM Points of Interest dataset is suitable for those classified as CLC class 1 which represents artificial surfaces.

Keywords

Volunteered geographic information (VGI) OpenStreetMap (OSM) Land use Land cover 

References

  1. Barron C, Neis P, Zipf A (2014) A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans GIS. doi: 10.1111/tgis.12073 Google Scholar
  2. Baulies X, Szejwach G (1997) Survey of needs, gaps and priorities on data for land use/land cover change research. Report presented at LUCC data requirements workshop. Barcelona, Spain, 11–14 Nov 1997Google Scholar
  3. Caetano M, Mata F, Freire S (2006) Accuracy assessment of the Portuguese CORINE Land Cover map. Glob Dev Environ Earth Obs Space:459–467Google Scholar
  4. Cihlar J (2000) Land cover mapping of large areas from satellites: status and research priorities. Int J Remote Sens 21(6–7):1093–1114. doi: 10.1080/014311600210092 CrossRefGoogle Scholar
  5. Clark ML, Aide TM (2011) Virtual interpretation of earth web-interface tool (VIEW-IT) for collecting land-use/land-cover reference data. Remote Sens 3(3):601–620. doi: 10.3390/rs3030601 CrossRefGoogle Scholar
  6. Corine Land Cover Nomenclature (2011) Corine land cover nomenclature illustrated guide. In: Joint meeting Geoland2—EAGLE. Málaga, Spain, 23–24 June. http://sia.eionet.europa.eu/EAGLE/EAGLE_6thMeeting_g2_Malaga/04d_Nomenclature_CLC.pdf. Accessed 5 Jun 2014
  7. Ellis E (2013) Land-use and land-cover change. In: The encyclopedia of earth. http://www.eoearth.org/view/article/51cbee4f7896bb431f696e92. Accessed 10 May 2014
  8. Elwood S, Goodchild MF, Sui DZ (2012) Researching volunteered geographic information: spatial data, geographic research, and new social practice. Ann Assoc Am Geogr 102(3):571–590. doi: 10.1080/00045608.2011.595657 CrossRefGoogle Scholar
  9. Estima J, Painho M (2013a) Exploratory analysis of OpenStreetMap for land use classification. In: Proceedings of the second ACM SIGSPATIAL international workshop on crowdsourced and volunteered geographic information—GEOCROWD ’13. ACM Press, pp 39–46. doi: 10.1145/2534732.2534734
  10. Estima J, Painho M (2013b) Flickr geotagged and publicly available photos: preliminary study of its adequacy for helping quality control of corine land cover. In: Murgante B, Misra S, Carlini M, Torre CM, Nguyen HQ, Taniar D, Gervasi O (eds) ICCSA 2013: computational science and its applications. The 13th international conference on computational science and its Applications, Ho Chi Minh City, Vietnam, 24-27 June 2013 . Lecture notes in computer science, vol 7974. Springer, Heidelberg, pp 205–220. doi: 10.1007/978-3-642-39649-6_15
  11. Estima J, Painho M (2014) photo based volunteered geographic information initiatives: a comparative study of their suitability for helping quality control of corine land cover. Int J Agric Environ Inf Syst 5(3):75–92. doi: 10.4018/ijaeis.2014070105 CrossRefGoogle Scholar
  12. European Environment Agency (2014) http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2. Accessed 5 Jun 2014
  13. Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28(4):700–719. doi: 10.1080/13658816.2013.867495 CrossRefGoogle Scholar
  14. Flickr (2014) https://www.flickr.com/. Accessed 5 Jun 2014
  15. Foody GM, Boyd DS (2013) Using volunteered data in land cover map validation: mapping West African forests. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1305–1312. doi: 10.1109/JSTARS.2013.2250257 CrossRefGoogle Scholar
  16. Fritz S, McCallum I, Schill C, Perger C, Grillmayer R, Achard F, Obersteiner M (2009) Geo-Wiki.Org: The use of crowdsourcing to improve global land cover. Remote Sens 1(3):345–354. doi: 10.3390/rs1030345
  17. Fritz S, McCallum I, Schill C, Perger C, See L, Schepaschenko D, Obersteiner M (2012) Geo-Wiki: an online platform for improving global land cover. Environ Model Softw 31:110–123. doi: 10.1016/j.envsoft.2011.11.015 CrossRefGoogle Scholar
  18. Geofabrik (2014) http://www.geofabrik.de/. Accessed 5 Jun 2014
  19. Goodchild M (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221. doi: 10.1007/s10708-007-9111-y CrossRefGoogle Scholar
  20. Goodchild M (2008a) Assertion and authority: the science of user-generated geographic content. In: Proceedings of the Colloquium for Andrew U. Frank’s 60th birthday. Department of Geoinformation and Cartography, Vienna, AustriaGoogle Scholar
  21. Goodchild M (2008b) Commentary: whither VGI? GeoJournal 72(3–4):239–244. doi: 10.1007/s10708-008-9190-4 CrossRefGoogle Scholar
  22. Goodchild M, Glennon JA (2010) Crowdsourcing geographic information for disaster response: a research frontier. Int J Digit Earth 3(3):231–241. doi: 10.1080/17538941003759255 CrossRefGoogle Scholar
  23. Google MyMaps (2014) https://www.google.com/maps/d/. Accessed 5 Jun 2014
  24. Hagenauer J, Helbich M (2012) Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int J Geogr Inf Sci 26(6):963–982. doi: 10.1080/13658816.2011.619501 CrossRefGoogle Scholar
  25. Hecht R, Kunze C, Hahmann S (2013) Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int J Geo-Inf 2(4):1066–1091. doi: 10.3390/ijgi2041066 CrossRefGoogle Scholar
  26. Hollenstein L, Purves R (2010) Exploring place through user-generated content: using Flickr to describe city cores. J Spat Inf Sci 1(1):21–48. doi: 10.5311/JOSIS.2010.1.3 Google Scholar
  27. Holone H, Misund G, Holmstedt H (2007) Users are doing it for themselves: pedestrian navigation with user generated content. In: International conference on next generation mobile applications, services and technologies. IEEE, pp 91–99. doi:  10.1109/NGMAST.2007.4343406
  28. Hudson-Smith A, Batty M, Crooks A, Milton R (2009) Mapping for the masses: accessing web 2.0 through crowdsourcing. Soc Sci Comput Rev 27(4):524–538. doi: 10.1177/0894439309332299 CrossRefGoogle Scholar
  29. Jokar Arsanjani J, Helbich M, Bakillah M (2013a) Exploiting volunteered geographic information to ease land use mapping of an urban landscape. In: International archives of the photogrammetry, remote sensing and spatial information sciences. 29th Urban data management symposium, vol XL-4/W1. London, United Kingdom, 29–31 May 2013Google Scholar
  30. Jokar Arsanjani JJ, Helbich M, Bakillah M, Hagenauer J, Zipf A (2013b) Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inf Sci 27(12):2264–2278. doi: 10.1080/13658816.2013.800871 CrossRefGoogle Scholar
  31. Jokar Arsanjani J, Vaz E (2015: in-press) An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int J Appl Earth Obs GeoinfGoogle Scholar
  32. Leung D, Newsam S (2010) Proximate sensing: Inferring what-is-where from georeferenced photo collections. In: Conference on computer vision and pattern recognition CVPR. IEEE, San Francisco, CA, pp 2955–2962, 13–18 June 2010. doi: 10.1109/CVPR.2010.5540040
  33. London Profiler (2014) http://128.40.111.250/casa/websites/profiler.asp. Accessed 5 Jun 2014
  34. MapTube (2014) http://www.maptube.org/. Accessed 5 Jun 2014
  35. Mooney P, Corcoran P, Winstanley A (2010) A study of data representation of natural features in OpenStreetMap. In Proceedings of the 6th GIScience international conference on geographic information science, vol 150. Zurich, Switzerland, 14–17 Sept 2010Google Scholar
  36. OpenStreetMap Map Features (2014) http://wiki.openstreetmap.org/wiki/Map_Features. Accessed 5 Jun 2014
  37. Perger C, Fritz S, See L, Schill C, Van Der Velde M, Mccallum I, Obersteiner M (2012) A campaign to collect volunteered geographic information on land cover and human impact. In GI Forum 2012: Geovizualisation, Society and Learning. pp 83–91Google Scholar
  38. Turner AJ (2006) Introduction to neogeography. Sebastopol, CAGoogle Scholar
  39. Wikimapia (2014) http://wikimapia.org/. Accessed 5 Jun 2014
  40. Zook M, Graham M, Shelton T, Gorman S (2010) Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian Earthquake. World Med Health Policy 2(2):6–32. doi: 10.2202/1948-4682.1069 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ISEGIUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations