Towards Visual Based Navigation with Power Line Detection

  • Alexander Cerón
  • Iván F. Mondragón B.
  • Flavio Prieto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8887)


Due to the high costs of obtaining images of power lines from different perspectives and the logistic problems of manned flights, it is useful to develop methods for visual based navigation by using UAVs. For this reason, visual based navigation strategies for UAV power line inspection are presented; a virtual environment for real time simulation was developed and a set of line detection methods were integrated and validated within the virtual environment. The first strategy is related with the obtaining of the initial pose of the UAV with respect to the power lines. The second strategy is for navigating over the power lines. The navigation is performed by using the information extracted from a virtual camera in a visual control scheme.


line detection visual control simulation UAV navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Z., Walker, R., Hayward, R., Mejias, L.: Advances in Vegetation Management for Power Line Corridor Monitoring Using Aerial Remote Sensing Techniques. In: Proceedings of the First International Conference on Applied Robotics for the Power Industry (CARPI), pp. 1–6. IEEE (2010)Google Scholar
  2. 2.
    Heer, P.: Framework for Vision-Based Power Line Inspection with an UAV. Technical report (2012)Google Scholar
  3. 3.
    Lu, M., Sheng, G., Liu, Y., Jiang, X., Nie, S., Qu, G.: Inspection Based on Unmanned Aerial Vehicle. In: Power and Energy Engineering Conference (APPEEC) (2012)Google Scholar
  4. 4.
    Wang, B., Chen, X., Wang, Q., Liu, L., Zhang, H., Li, B.: Power line inspection with a flying robot. In: 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI 2010), pp. 1–6. IEEE (2010)Google Scholar
  5. 5.
    Li, Z., Bruggemann, T.S., Ford, J.J., Mejias, L., Liu, Y.: Toward Automated Power Line Corridor Monitoring Using Advanced Aircraft Control and Multisource Feature Fusion. Journal of Field Robotics 29, 4–24 (2012)CrossRefGoogle Scholar
  6. 6.
    Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive Simulation of Quadrotor UAVs Using ROS and Gazebo. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 400–411. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A robot simulator for research and education. In: IEEE International Conference on Robotics and Automation, pp. 1400–1405. IEEE (2007)Google Scholar
  8. 8.
    Dijkshoorn, N.: Integrating Sensor and Motion Models to Localize an Autonomous AR.Drone. International Journal of Micro Air Vehicles 3 (2011)Google Scholar
  9. 9.
    Dijkshoorn, N.: Simultaneous localization and mapping with the AR.Drone (2012)Google Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Park, M.: Use of the Hough Transformation To Detect Lines and Curves in Pictures. Graphics and Image Processing 15, 11–15 (1972)zbMATHGoogle Scholar
  11. 11.
    Burns, B., Hanson, A.R., Riseman, E.M.: Extracting Straight Lines. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 425–455 (1986)CrossRefGoogle Scholar
  12. 12.
    Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: A Line Segment Detector. Image Processing on Line (2012)Google Scholar
  13. 13.
    Akinlar, C., Topal, C.: EDLines: A real-time line segment detector with a false detection control. Pattern Recognition Letters 32, 1633–1642 (2011)CrossRefGoogle Scholar
  14. 14.
    Yao, X., Guo, L., Zhao, T.: Power Line Detection Based on Region Growing and Ridge-Based Line Detector. In: Sun, Z., Deng, Z. (eds.) Proceeding of 2013 Chinese Intelligent Automation Conference. LNEE, vol. 255, pp. 431–437. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Liu, Y., Hayward, R., Zhang, J., Cai, J.: Knowledge-based power line detection for UAV surveillance and inspection systems. In: 2008 23rd International Conference Image and Vision Computing, New Zealand, pp. 1–6 (2008)Google Scholar
  16. 16.
    Zhang, J., Liu, L., Wang, B., Chen, X., Zheng, Q.W.: High speed Automatic Power Line Detection and Tracking for a UAV-Based Inspection. In: International Conference on Industrial Control and Electronics Engineering (2012)Google Scholar
  17. 17.
    Liu, Y., Mejias, L., Li, Z.: Fast power line detection and localization using steerable filter for active uav guidance. In: 12th International Society for Photogrammetry & Remote Sensing (ISPRS 2012), vol. XXXIX, pp. 491–496 (2012)Google Scholar
  18. 18.
    Cheng, W., Song, Z.: Power Pole Detection Based on Graph Cut. In: 2008 Congress on Image and Signal Processing, pp. 720–724 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Cerón
    • 1
    • 2
  • Iván F. Mondragón B.
    • 3
  • Flavio Prieto
    • 1
  1. 1.Universidad Nacional de Colombia - Sede BogotáBogotáColombia
  2. 2.Universidad Militar Nueva GranadaBogotáColombia
  3. 3.Department of Industrial engineeringPontificia Universidad JaverianaBogotáColombia

Personalised recommendations