Advertisement

Volumetric Topological Analysis on In Vivo Trabecular Bone Magnetic Resonance Imaging

  • Cheng Chen
  • Dakai Jin
  • Yinxiao Liu
  • Felix W. Wehrli
  • Gregory Chang
  • Peter J. Snyder
  • Ravinder R. Regatte
  • Punam K. Saha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8887)

Abstract

Osteoporosis is a common bone disease associated with increased risk of low-trauma fractures leading to substantial morbidity, mortality, and financial costs. Clinically, osteoporosis is defined by low bone mineral density (BMD); however, increasing evidence suggests that trabecular bone (TB) micro-architectural quality is an important determinant of bone strength and fracture risk. Recently developed volumetric topological analysis (VTA) is a unique method that characterizes individual trabeculae on the continuum between a perfect plate and a perfect rod. In this paper, an improved VTA algorithm is presented that eliminates the binarization step using fuzzy skeletonization. Its repeat scan reproducibility is evaluated for two different in vivo magnetic resonance imaging (MRI) protocols. High intra-class correlation coefficients, greater than 0.93, were observed for both the knee and the wrist MRI. The ability of the method to detect testosterone treatment effects of a two-year longitudinal study on hypogonadal men is also presented. Our method shows statistically significant improvement of TB quality as early as 6 months and the trend was observed to continue at 12 and 24 months.

Keywords

Osteoporosis trabecular bone volumetric topological analysis plate/rod classification magnetic resonance imaging skeletonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benito, M., Vasilic, B., Wehrli, F.W., Bunker, B., Wald, M., Gomberg, B., Wright, A.C., Zemel, B., Cucchiara, A., Snyder, P.J.: Effect of testosterone replacement on trabecular architecture in hypogonadal men. J. Bone and Mine. Res. 20(10), 1785–1791 (2005)CrossRefGoogle Scholar
  2. 2.
    Chang, G., Wang, L., Liang, G., Babb, J.S., Saha, P.K., Regatte, R.R.: Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-tesla magnetic resonance images. MAGMA 24(3), 121–125 (2011)CrossRefGoogle Scholar
  3. 3.
    Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G., Kleerekoper, M.: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Min. Res. 4, 3–11 (1989)CrossRefGoogle Scholar
  4. 4.
    Hildebrand, T., Laib, A., Muller, R., Dequeker, J., Rüegsegger, P.: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Min. Res. 14, 1167–1174 (1999)CrossRefGoogle Scholar
  5. 5.
    Jin, D., Saha, P.K.: A new fuzzy skeletonization algorithm and its applications to medical imaging, September 11-13 (2013)Google Scholar
  6. 6.
    Kleerekoper, M., Villanueva, A.R., Stanciu, J., Rao, D.S., Parfitt, A.M.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Cal. Tis. Int. 37, 594–597 (1985)CrossRefGoogle Scholar
  7. 7.
    Laib, A., Hauselmann, H.J., Rüegsegger, P.: In vivo high resolution 3d-qct of the human forearm. Tech. Heal. Care 6, 329–337 (1998)Google Scholar
  8. 8.
    Lam, S.C., Wald, M.J., Rajapakse, C.S., Liu, Y., Saha, P.K., Wehrli, F.W.: Performance of the mri-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone 49(4), 895–903 (2011)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Jin, D., Li, C., Janz, K.F., Burns, T.L., Torner, J.C., Levy, S.M., Saha, P.K.: A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone ct imaging. IEEE Trans. Bio. Eng. (2014)Google Scholar
  10. 10.
    Majumdar, S.: Magnetic resonance imaging of trabecular bone structure. Top. Magn. Reson. Imaging 13(5), 323–334 (2002)CrossRefGoogle Scholar
  11. 11.
    Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleerekoper, M., Frame, B., Rao, D.S.: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. implications for the microanatomic and cellular mechanisms of bone loss. J Clin Inv. 72, 1396–1409 (1983)CrossRefGoogle Scholar
  12. 12.
    Recker, R.R.: Architecture and vertebral fracture. Cal. Tis. Int. 53(Suppl. 1), S139–S142 (1993)Google Scholar
  13. 13.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3-d simple points for topology preserving transformations with application to thinning. IEEE Trans. Pat. Anal. Mach. Intel. 16, 1028–1032 (1994)CrossRefGoogle Scholar
  14. 14.
    Saha, P.K., Chaudhuri, B.B.: 3d digital topology under binary transformation with applications. Comp. Vis. Imag. Und. 63, 418–429 (1996)CrossRefGoogle Scholar
  15. 15.
    Saha, P.K., Gomberg, B.R., Wehrli, F.W.: Three-dimensional digital topological characterization of cancellous bone architecture. Int. J. Imag. Sys. Tech. 11, 81–90 (2000)CrossRefGoogle Scholar
  16. 16.
    Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comp. Vis. Imag. Und. 86, 171–190 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Saha, P.K., Xu, Y., Duan, H., Heiner, A., Liang, G.: Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans. Med. Imaging 29(11), 1821–1838 (2010)CrossRefGoogle Scholar
  18. 18.
    Vesterby, A., Gundersen, H.J., Melsen, F., Mosekilde, L.: Marrow space star volume in the iliac crest decreases in osteoporotic patients after continuous treatment with fluoride, calcium, and vitamin d2 for five years. Bone 12(1), 33–37 (1991)CrossRefGoogle Scholar
  19. 19.
    Wehrli, F.W., Gomberg, B.R., Saha, P.K., Song, H.K., Hwang, S.N., Snyder, P.J.: Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J. Bone Miner. Res. 16, 1520–1531 (2001)CrossRefGoogle Scholar
  20. 20.
    Wehrli, F.W., Saha, P.K., Gomberg, B.R., Song, H.K., Snyder, P.J., Benito, M., Wright, A., Weening, R.: Role of magnetic resonance for assessing structure and function of trabecular bone. Top. Mag. Res. Imag. 13, 335–356 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cheng Chen
    • 1
  • Dakai Jin
    • 1
  • Yinxiao Liu
    • 1
  • Felix W. Wehrli
    • 3
  • Gregory Chang
    • 2
  • Peter J. Snyder
    • 3
  • Ravinder R. Regatte
    • 2
  • Punam K. Saha
    • 1
  1. 1.Department of ECE and RadiologyUniversity of IowaIowa CityUSA
  2. 2.Department of RadiologyNYU Langone Medical CenterNew YorkUSA
  3. 3.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations