Coupled Dictionary Learning for Automatic Multi-Label Brain Tumor Segmentation in Flair MRI images

  • Saif Dawood Salman Al-Shaikhli
  • Michael Ying Yang
  • Bodo Rosenhahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8887)

Abstract

Brain tumor segmentation and labeling is a challenging task in medical imaging. In this paper, a novel patch based dictionary learning algorithm for automatic multi-label brain tumor segmentation is proposed. Based on image reconstruction, we present coupled dictionaries, one dictionary of grayscale brain tumor image patches and one dictionary of tumor labels, which can then be used for automatic multi-label brain tumor segmentation of a test image data. The dictionaries are learned from training images of BraTS-MICCAI and the SPL/NSG brain tumor databases. The label dictionary is proposed to select foreground and background labels for automatic graph-cut segmentation. For quantitative evaluation, five different metric scores are computed using the online evaluation tool provided by the BraTS organizers. Experimental results demonstrate that the proposed approach achieves accurate results and outperforms most of the state-of-the-art methods cited in BraTS-MICCAI challenge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: Segmentation, Feature Extraction, Multiclass Brain Tumor Classification. Journal of Digital Imaging 26, 1141–1150 (2013)CrossRefGoogle Scholar
  2. 2.
    Jiang, S., Wu, Y., Huang, M., Yang, W., Chen, W., Feng, Q.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. CMIG 37(7), 512–521 (2013)Google Scholar
  3. 3.
    Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Automatic Brain and Tumor Segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 372–379. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: Glioma Image Segmentation and Registration. IEEE Trans. Med. Imag. 31(10), 1941–1954 (2012)CrossRefGoogle Scholar
  5. 5.
    Weiss, N., Rueckert, D., Rao, A.: Multiple Sclerosis Lesion Segmentation Using Dictionary Learning and Sparse Coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cao, T., Jojic, V., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Robust multimodal dictionary learning. MICCAI 16(1), 259–266 (2013)Google Scholar
  8. 8.
    Reza, S., Iftekharuddin, K.M.: Multi-class Abnormal Brain Tissue Segmentation Using Texture Features. In: Proceedings of BraTS-MICCAI, pp. 38–42 (2013)Google Scholar
  9. 9.
    Tustison, N., Wintermark, M., Durst, C., Avants, B.: ANTs and Arboles. In: Proceedings of BraTS-MICCAI, pp. 47–50 (2013)Google Scholar
  10. 10.
    Zhao, L., Sarikaya, D., Corso, J.J.: Automatic Brain Tumor Segmentation with MRF on Supervoxels. In: Proceedings of BraTS-MICCAI, pp. 51–54 (2013)Google Scholar
  11. 11.
    Festa, J., Pereira, S., Mariz, J.A., Sousa, N., Silva, C.A.: Automatic Brain Tumor Segmentation of Multi-Sequence MR Images Using Random Decision Forests. In: Proceedings of BraTS-MICCAI, pp. 23–26 (2013)Google Scholar
  12. 12.
    Thiagarajan, J.J., Ramamurthy, K.N., Rajan, D., Spanias, A.: Kernel Sparse Models for Automatic Tumor Segmentation. IJAIT 12, 1–12 (2013)Google Scholar
  13. 13.
    Zhao, L., Wu, W., Corso, J.J.: Semi-Automatic Brain Tumor Segmentation By Constrained MRFs using Structural Trajectories. MICCAI 16(pt 3), 567–575 (2013)Google Scholar
  14. 14.
    Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)CrossRefGoogle Scholar
  15. 15.
    Cordier, N., Menze, B., Delingette, H., Ayache, N.: Patch-based Segmentation of Brain Tissues. In: Proceedings of BraTS-MICCAI, pp. 6–17 (2013)Google Scholar
  16. 16.
    Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A Hybrid Model for Multimodal Brain Tumor Segmentation. In: Proceedings of BraTS-MICCAI, pp. 31–37 (2013)Google Scholar
  17. 17.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  18. 18.
    Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast Approximate Energy Minimization with Label Costs. In: CVPR, pp. 2173–2180 (2010)Google Scholar
  19. 19.
    Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated Segmentation of MRI of Brain Tumors. Radiology 218(2), 586–591 (2001)CrossRefGoogle Scholar
  20. 20.
    Brain Tumor Database (BraTS-MICCAI), http://hal.inria.fr/hal-00935640
  21. 21.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Saif Dawood Salman Al-Shaikhli
    • 1
  • Michael Ying Yang
    • 1
  • Bodo Rosenhahn
    • 1
  1. 1.Institut für InformationsverarbeitungLeibniz Universität HannoverHannoverGermany

Personalised recommendations