Situated Gaming: Beyond Games as Instructional Technology

  • Adam MechtleyEmail author
Part of the Educational Media and Technology Yearbook book series (EMTY, volume 39)


Some recent science education scholarship has called for a renewed focus on empowering learners to engage with science for personally and socially meaningful purposes. However, engaging with science in these ways requires that learners adopt epistemic aims in their activity, which we cannot take for granted. I argue here that serious games could support these goals, but that our approaches to their design and implementation require greater attention to the cultural and historical aspects of the activity systems in which they are being used. Attention to these elements provides us with powerful tools for situating our designs in use contexts.


Games Activity theory Epistemic cognition Science education 



This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1256259. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


  1. Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353–374. doi: 10.1080/09500693.2011.629013.CrossRefGoogle Scholar
  2. Aleven, V., Myers, E., Easterday, M., & Ogan, A. (2010). Toward a framework for the analysis and design of educational games. In 2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning (pp. 69–76). IEEE. doi: 10.1109/DIGITEL.2010.55.
  3. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542. doi: 10.1002/sce.20432.CrossRefGoogle Scholar
  4. Banks, J., & Potts, J. (2010). Towards a cultural science of videogames: Evolutionary social learning. Cultural Science, 3(1), 1–17.Google Scholar
  5. Barab, S. A., Barnett, M., Yamagata-Lynch, L., Squire, K. D., Keating, T., & Squire, K. (2002). Using activity theory to understand the systemic tensions characterizing a technology-rich introductory astronomy course. Mind, Culture, and Activity, 9(2), 76–107. doi: 10.1207/S15327884MCA0902.CrossRefGoogle Scholar
  6. Barab, S. A., Sadler, T. D., Heiselt, C., Hickey, D. T., & Zuiker, S. J. (2010). Erratum to: Relating narrative, inquiry, and inscriptions: Supporting consequential play. Journal of Science Education and Technology, 19(4), 387–407. doi: 10.1007/s10956-010-9220-0.CrossRefGoogle Scholar
  7. Barab, S. A., & Squire, K. D. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14. doi: 10.1207/s15327809jls1301_1.CrossRefGoogle Scholar
  8. Berland, M. (2012). Becoming an expert boardgamer: A quantitative exploration. In C. Martin, A. Ochsner, & K. Squire (Eds.), Proceedings of the 8th Annual Games + Learning + Society Conference (pp. 521–522). Madison, WI: ETC Press.Google Scholar
  9. Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141–178.CrossRefGoogle Scholar
  10. Chen, M. (2013). From new players to fervent hobbyists: BoardGameGeeks unite! In C. C. Williams, A. Ochsner, J. Dietmeier, & C. A. Steinkuehler (Eds.), Proceedings of the 9th Annual Games + Learning + Society Conference (pp. 479–480). Pittsburgh, PA: ETC Press. doi: 10.4018/ijgbl.2011040105.Google Scholar
  11. Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. doi: 10.1080/00461520.2011.587722.CrossRefGoogle Scholar
  12. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi: 10.1002/sce.10001.CrossRefGoogle Scholar
  13. Chinn, C. A., & Samarapungavan, A. (2001). Distinguishing between understanding and belief. Theory Into Practice, 40(4), 235–241.CrossRefGoogle Scholar
  14. Choontanom, T., & Nardi, B. A. (2012). Theorycrafting: The art and science of using numbers to interpret the world. In C. A. Steinkuehler, K. D. Squire, & S. A. Barab (Eds.), Games, learning, and society: Learning and meaning in the digital age (pp. 185–209). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  15. Clark, D. B., & Martinez-Garza, M. M. (2012). Prediction and explanation as design mechanics in conceptually integrated digital games to help players articulate the tacit understandings they build through game play. In C. A. Steinkuehler, K. D. Squire, & S. A. Barab (Eds.), Games, learning, and society: Learning and meaning in the digital age (pp. 279–305). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  16. Clark, D. B., Nelson, B. C., Chang, H.-Y., Martinez-Garza, M. M., Slack, K., & D’Angelo, C. M. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57(3), 2178–2195. doi: 10.1016/j.compedu.2011.05.007.CrossRefGoogle Scholar
  17. Cole, M., & Engeström, Y. (2007). Cultural–historical approaches to designing for development. In J. Valsiner & A. Rosa (Eds.), The Cambridge handbook of sociocultural psychology (pp. 484–507). New York: Cambridge University Press.CrossRefGoogle Scholar
  18. Collins, A. (1992). Toward a design science of education. Berlin, Germany: Springer.CrossRefGoogle Scholar
  19. Duncan, S. C. (2011). Minecraft, beyond construction and survival. Well Played, 1, 1–22.Google Scholar
  20. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554–567.CrossRefGoogle Scholar
  21. Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki, Finland: Orienta-Konsultit Oy.Google Scholar
  22. Ford, M. J. (2008). “Grasp of practice” as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17(2–3), 147–177. doi: 10.1007/s11191-006-9045-7.CrossRefGoogle Scholar
  23. Gaydos, M. J., & Squire, K. D. (2010). Citizen science: Designing a game for the 21st century. In R. Van Eck (Ed.), Interdisciplinary models and tools for serious games: Emerging concepts and future directions (pp. 289–304). Hershey, PA: Information Science Reference.CrossRefGoogle Scholar
  24. Gaydos, M. J., & Squire, K. D. (2012). Role playing games for scientific citizenship. Cultural Studies of Science Education, 7(4), 821–844.CrossRefGoogle Scholar
  25. Gee, J. P. (2003). What video games have to teach us about learning and literacy. New York: Palgrave Macmillan.Google Scholar
  26. Greene, J. A., Azevedo, R., & Torney-Purta, J. (2008). Modeling epistemic and ontological cognition: Philosophical perspectives and methodological directions. Educational Psychologist, 43(3), 142–160. doi: 10.1080/00461520802178458.CrossRefGoogle Scholar
  27. Hakkarainen, P. (1999). Play and motivation. In Y. Engeström, R. Miettinen, & R.-L. Punamäki (Eds.), Perspectives on activity theory (pp. 231–249). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  28. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169–190). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  29. Hilton, M., & Honey, M. A. (Eds.). (2011). Learning science through computer games and simulations. National Academies Press.Google Scholar
  30. Hofer, B. K., & Bendixen, L. D. (2012). Personal epistemology: Theory, research, and future directions. In K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G. M. Sinatra, & J. Sweller (Eds.), APA educational psychology handbook (Theories, constructs, and critical issues, Vol. 1, pp. 227–256). Washington, DC: American Psychological Association. doi: 10.1037/13273-009.Google Scholar
  31. Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.CrossRefGoogle Scholar
  32. Kaptelinin, V. (1996). Activity theory: Implications for human-computer interaction. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human–computer interaction (pp. 53–59). Cambridge, MA: MIT Press.Google Scholar
  33. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  34. Kuutti, K. (1996). Activity theory as a potential framework for human–computer interaction research. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human–computer interaction (pp. 9–22). Cambridge, MA: MIT Press.Google Scholar
  35. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, United Kingdom: Cambridge University Press.CrossRefGoogle Scholar
  36. Latour, B., & Woolgar, S. (1979). Laboratory life: The social construction of scientific facts. Beverly Hills, CA: Sage.Google Scholar
  37. Leont’ev, A. N. (1981). Problems of the development of the mind. Moscow: Progress.Google Scholar
  38. Makuch, E. (2014a). Minecraft console sales pass PC, series nears 54 million copies sold. GameSpot. Retrieved September 30, 2014, from
  39. Makuch, E. (2014b). Minecraft passes 100 million registered users, 14.3 million sales on PC. GameSpot. Retrieved September 30, 2014, from
  40. McGinn, M. K., & Roth, W.-M. (1999). Preparing students for competent scientific practice: Implications of recent research in science and technology studies. Educational Researcher, 28(3), 14–24.CrossRefGoogle Scholar
  41. Nardi, B. A. (Ed.). (1996a). Context and consciousness: Activity theory and human–computer interaction. Cambridge, MA: MIT Press.Google Scholar
  42. Nardi, B. A. (1996b). Studying context: A comparison of activity theory, situated action models, and distributed cognition. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human–computer interaction (pp. 69–102). Cambridge, MA: MIT Press.Google Scholar
  43. Rosenberg, S., Hammer, D., & Phelan, J. (2006). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. Journal of the Learning Sciences, 15(2), 261–292. doi: 10.1207/s15327809jls1502.CrossRefGoogle Scholar
  44. Rudolph, J. L. (2003). Portraying epistemology: School science in historical context. Science Education, 87(1), 64–79. doi: 10.1002/sce.1055.CrossRefGoogle Scholar
  45. Sandoval, W. A. (2004). Developing learning theory by refining conjectures embodied in educational designs. Educational Psychologist, 39(4), 213–223. doi: 10.1207/s15326985ep3904_3.CrossRefGoogle Scholar
  46. Sandoval, W. A. (2012). Situating epistemological development. In The Future of Learning: Proceedings of the 10th International Conference of the Learning Sciences (Vol. 1, pp. 347–354). Sydney, Australia: International Society of the Learning Sciences.Google Scholar
  47. Sandoval, W. A. (2014). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23(1), 18–36. doi: 10.1080/10508406.2013.778204.CrossRefGoogle Scholar
  48. Sandoval, W. A., & Millwood, K. A. (2007). What can argumentation tell us about epistemology? In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 71–90). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  49. Short, D. (2012). Teaching scientific concepts using a virtual world—Minecraft. Teaching Science, 38(3), 55–58.Google Scholar
  50. Squire, K. D. (2006). From content to context: Videogames as designed experience. Educational Researcher, 35(8), 19–29.CrossRefGoogle Scholar
  51. Squire, K. D., MaKinster, J. G., Barnett, M., Luehmann, A. L., & Barab, S. A. (2003). Designed curriculum and local culture: Acknowledging the primacy of classroom culture. Science Education, 87(4), 468–489. doi: 10.1002/sce.10084.CrossRefGoogle Scholar
  52. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, “translations” and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39. Social Studies of Science, 19(3), 387–420.CrossRefGoogle Scholar
  53. Steinkuehler, C. A., & Duncan, S. C. (2008). Scientific habits of mind in virtual worlds. Journal of Science Education and Technology, 17(6), 530–543. doi: 10.1007/s10956-008-9120-8.CrossRefGoogle Scholar
  54. The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.CrossRefGoogle Scholar
  55. Vygotsky, L. S. (1978). In M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.), Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  56. Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249–265. doi: 10.1037/a0031311.CrossRefGoogle Scholar
  57. Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., et al. (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61–89. doi: 10.3102/0034654312436980.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Curriculum & InstructionUniversity of WisconsinMadisonUSA

Personalised recommendations