Health Assistance for Immigrants

  • Till Plumbaum
  • Funda Klein-Ellinghaus
  • Anna Reeske
  • Kristin Pelz
  • Frank Hopfgartner
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)


Our personal health should be one of our main concerns, but unfortunately, due to modern lifestyle, far too many people ignore their own well-being. Consequently, methodologies need to be developed that assist us in living a healthier life. In this chapter, we present a health assistance system for immigrants. The system consists of two parts: A health information system that allows users to search for health information using natural language queries composed of multiple languages and a prevention service that assists users in their cooking routine and motivates them to perform frequent physical exercises. The information system uses NLP techniques to understand the user query, matches it to a health ontology we developed, and offers the user a comprehensive answer. The prevention service is embedded in a smart home environment. We present the technical details of both systems and show a user study to demonstrate that the system works well in providing highly relevant health information.


Prevention Service Search Query Health Information System Unify Medical Language System Ontology Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Federal Ministry of Education and Research (BMBF) under funding reference number 01IS10055A-C.


  1. 1.
    S.N. Blair, H.W. Kohl, R.S. Paffenbarger Jr, D.G. Clark, K.H. Cooper, L.W. Gibbons, Physical fitness and all-cause mortality. A prospective study of health men and women. JAMA 262, 2395–2401 (1989)CrossRefGoogle Scholar
  2. 2.
    M.N.K. Boulos, Xbox 360 kinect exergames for health. Games Health J. 1, 326–330 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Brickley, L. Miller, FOAF vocabulary specification 0.91. namespace document, FOAF project (2007)Google Scholar
  4. 4.
    B.J. Brown and J.R. Hermann, Cooking classes increase fruit and vegetable intake and food safety behaviors in youths and adults. J. Nutr. Educ. Behav. 37, 2005.Google Scholar
  5. 5.
    S. Bundesamt. Bevölkerung und Erwerbstätigkeit. Technical report, 09 2012Google Scholar
  6. 6.
    P. Clough, M. Stevenson, Cross-language information retrieval using Eurowordnet and word sense disambiguation. Adv. Inf. Retr. 327–337 (2004)Google Scholar
  7. 7.
    K.P. Derose, J.J. Escarce, N. Lurie, Immigrants and health care: sources of vulnerability. Health Aff. 09, 1258–1268 (2005)Google Scholar
  8. 8.
    M.E. Falagas, E.I. Pitsouni, G.A. Malietzis, G. Pappas, Comparison of pubmed, scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 22(2), 338–342 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Fox, L. Raine, Vital decisions: how internet users decide what information to trust when they or their loved ones are sick. Plus a guide from the medical library association about smart health-search strategies and good websites (2002)Google Scholar
  10. 10.
    C. Glenton, E.J. Paulsen, A.D. Oxmanm, Portals to wonderland: health portals lead to confusing information about the effects of health care. BMC Med. Inform. Decis. Mak. (2005)Google Scholar
  11. 11.
    R.T. Gruber, Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  12. 12.
    J. Guyot, S. Radhouani, G. Falquet, Ontology-based multilingual information retrieval CLEF Workshop Working Notes Multilingual Track, pp. 21–23 (2005)Google Scholar
  13. 13.
    J.C.G. Halford, J. Gillespie, V. Brown, E.E. Pontin, T.M. Dovey, Effect of television advertisements for foods on food consumption in children. Appetite 42(2), 221–225 (2004)CrossRefGoogle Scholar
  14. 14.
    R. Hamada, J. Okabe, I. Ide, S. Satoh, S. Sakai, H. Tanaka, Cooking Navi: assistant for daily cooking in kitchen, in Proceedings of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA’05 (ACM, New York, 2005) pp. 371–374Google Scholar
  15. 15.
    D. Heckmann, E. Schwarzkopf, J. Mori, D. Dengler, A. Kröner, The user model and context ontology Gumo revisited for future web 2.0 extensions, in Proceedings of the International Workshop on Contexts and Ontologies: Representation and Reasoning (CO:RR), vol. 298 of CEUR Workshop Proceedings., ed. by P. Bouquet, J. Euzenat, C. Ghidini, D.L. McGuinness, L. Serafini, P. Shvaiko, H. Wache (2007)Google Scholar
  16. 16.
    D. Hiemstra, F. De Jong, Disambiguation strategies for cross-language information retrieval, Res. Adv. Technol. DL. 852–852 (1999)Google Scholar
  17. 17.
    F. Hopfgartner, J.M. Jose, Semantic user profiling techniques for personalised multimedia recommendation. Multimed. Syst. 16(4–5), 255–274 (2010)CrossRefGoogle Scholar
  18. 18.
    P.T. Johnson, J.K. Chen, J. Eng, M.A. Makary, E.K. Fishman, A comparison of world wide web resources for identifying medical information. Acad. Radiol. 15(9), 1165–1172 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Keller, M. Landry, J. Olson, A. Velliquette, S. Burton, J.Craig Andrews, The effects of nutrition package claims, nutrition facts panels, and motivation to process nutrition information on consumer product evaluation. J. Public Policy Mark. 16, 256–269 (1997)Google Scholar
  20. 20.
    O. Kuss, G. Eysenbach, J. Powell, E.R. Sa, Empirical studies assessing the quality of health information for customers on the world wide web: a systematic review. J. Am. Med. Assoc. 05, 2691–2700 (2002)Google Scholar
  21. 21.
    S. Lamnek, Qualitative Sozialforschung (Beltz Verlag, Weinheim, 2005)Google Scholar
  22. 22.
    A. Lommatzsch, T. Plumbaum, S. Albayrak, A linked dataverse knows better: boosting recommendation quality using semantic knowledge, in Proceedings Advances in Semantic Processing, Wilmington, pp. 97–103 (2011)Google Scholar
  23. 23.
    P. Mayring, Qualitative Inhaltsanalyse: Grundlagen und Techniken (Beltz Verlag, Weinheim, 2007)Google Scholar
  24. 24.
    J. McGonigal, Reality is Broken: Why Games Make Us Better and How They Can Change the World (Penguin Press, New York, 2011)Google Scholar
  25. 25.
    Janet M. Morahan-Martin, How internet users find, evaluate, and use online health information: a cross-cultural review. Cyberpsychol. Behav. 7(5), 497–510 (2004)CrossRefGoogle Scholar
  26. 26.
    J.G. Nicholls, The Competitive Ethos and Democratic Education (Harvard University Press, Cambridge, 1989)Google Scholar
  27. 27.
    D. Oard, A comparative study of query and document translation for cross-language information retrieval Mach. Transl. Inf. Soup 472–483 (1998)Google Scholar
  28. 28.
    C. Pelz, A. Schmitt, M. Meis, Knowledge Mapping als Methode zur Auswertung und Ergebnispräsentation von Fokusgruppen in der Markt- und Evaluationsforschung (2004)Google Scholar
  29. 29.
    T. Plumbaum, S. Narr, E. Eryilmaz, F. Hopfgartner, F. Klein-Ellinghaus, A. Reese, S. Albayrak, Providing multilingual access to health-oriented content, in Proceedings of the 25th European Medical Informatics Conference, MIE (IOS Press, 2014), pp. 393–397Google Scholar
  30. 30.
    T. Plumbaum, S. Narr, V. Schwartze, F. Hopfgartner, S. Albayrak, An intelligent health assistant for migrants, in Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth, (IEEE, 2013), pp. 307–308Google Scholar
  31. 31.
    T. Plumbaum, S. Wu, E. William De Luca, S. Albayrak, User modeling for the social semantic webs, in Proceedings Workshop on Semantic Personalized Information Management: Retrieval and Recommendation, pp. 78–89 (2011)Google Scholar
  32. 32.
    M.T. Pollard, Western Diseases: An Evolutionary Perspective (CUP, Cambridge, 2009)Google Scholar
  33. 33.
    J. Rogers, A. Rector, Galen’s model of parts and wholes: experience and comparisons, in Proceedings of the AMIA Symposium, pp. 714–718 (2000)Google Scholar
  34. 34.
    P. Sorg, P. Cimiano, Cross-lingual information retrieval with explicit semantic analysis, in Working Notes of the Annual CLEF Meeting (2008)Google Scholar
  35. 35.
    M. Swan, Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int. J. Environ. Res. Public Health 6(2), 492–525 (2009)CrossRefGoogle Scholar
  36. 36.
    B. Taskar, M.F. Wong, P. Abbeel, D. Koller, Link prediction in relational data, in NIPS (2003)Google Scholar
  37. 37.
    H. ten Napel, J. Rogers, Assessment of the Galen methodology on holistic classifications for professions allied to medicine. Medinfo 10(Pt 2), 1369–1373 (2001)Google Scholar
  38. 38.
    United Nations, Department of Economic and Social Affairs. World population policies 2005. Technical report, 03 2006Google Scholar
  39. 39.
    U.S. Department of Health and Human Services. Physical activity and health: A report of the surgeon general. Technical report, CDC, 2006Google Scholar
  40. 40.
    D. Vallet, F. Hopfgartner, J.M. Jose, Use of implicit graph for recommending relevant videos: a simulated evaluation, in ECIR, pp. 199–210 (2008)Google Scholar
  41. 41.
    D. Vallet, F. Hopfgartner, J.M. Jose, P. Castells, Effects of usage-based feedback on video retrieval: a simulation-based study. ACM Trans. Inf. Syst. 29(2) (2011)Google Scholar
  42. 42.
    K. van der Horst, T.A. Brunner, M. Siegrist, Ready-meal consumption: associations with weight status and cooking skills. Public Health Nutr. 14, 239–245 (2010)CrossRefGoogle Scholar
  43. 43.
    P. Vossen, EuroWordNet: A Multilingual Database with Lexical Semantic Networks (Kluwer Academic, The Netherlands, 1998)CrossRefMATHGoogle Scholar
  44. 44.
    D.E.R. Warburton, C.W. Nicol, S.S.D. Bredin, Health benefits of physical activity: the evidence. CMAJ 174, 801–809 (2006)CrossRefGoogle Scholar
  45. 45.
    J.R. Whitson. Gaming the quantified self. Surveill. Soc. 11 (2013)Google Scholar
  46. 46.
    World Health Organization, Global recommendations on physical activity for health. Technical report, WHO, 2010Google Scholar
  47. 47.
    Y. Yilmaz, S. Glodny, O. Razum, Soziale netzwerkarbeit als alternatives konzept für die rekrutierung türkischer migranten zu wissenschaftlichen studien am beispiel des projektes saba. “pflegebedürftig” in der gesundheitsgesellschaft, in Hallesche Beiträge zu den Gesundheits- und Pflegewissenschaften (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Till Plumbaum
    • 1
  • Funda Klein-Ellinghaus
    • 2
  • Anna Reeske
    • 2
  • Kristin Pelz
    • 3
  • Frank Hopfgartner
    • 1
  1. 1.Technische Universität BerlinBerlinGermany
  2. 2.Leibniz Institute for Prevention Research and EpidemiologyBremenGermany
  3. 3.AOK BundesverbandBerlinGermany

Personalised recommendations