The Pnicogen Bond in Review: Structures, Binding Energies, Bonding Properties, and Spin-Spin Coupling Constants of Complexes Stabilized by Pnicogen Bonds

Chapter

Abstract

Extensive ab initio MP2/aug’-cc-pVTZ studies have been carried out in our laboratories to determine the structures, binding energies, bonding properties, and EOM-CCSD spin-spin coupling constants of various series of complexes stabilized by pnicogen bonds. These systematic studies provide insight into the nature of the pnicogen bond, and how changes in this bond are reflected in the properties of these complexes.

Keywords

Intermolecular interactions Pnicogen atoms as electron-pair acceptors Structures Binding energies Cooperativity Charge-transfer energies Bonding properties EOM-CCSD spin-spin coupling constants 

References

  1. 1.
    Heyding RD, Calvert LD (1961) Arsenides of the transition metals. IV. A note on the platinum metal arsenides. Can J Chem 39:955–957Google Scholar
  2. 2.
    Girolami GS (2009) Origin of the terms pnictogen and pnictide. J Chem Educ 86:1200–1201Google Scholar
  3. 3.
    Cranton GE, Heyding RD (1965) Synthesis in aqueous solutions of binary compounds of the transition metals with group VA and VIA elements. Can J Chem 43:2027–2032Google Scholar
  4. 4.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 83:1637–1641Google Scholar
  5. 5.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85:1711–1713Google Scholar
  6. 6.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189Google Scholar
  7. 7.
    Mulliken RS, Person WB (1969) Molecular complexes. Wiley, New YorkGoogle Scholar
  8. 8.
    Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering. Struct Bond 126:105–136Google Scholar
  9. 9.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038Google Scholar
  10. 10.
    Klinkhammer KW, Pyykko P (1995) Ab Initio Interpretation of the closed-shell intermolecular E···E attraction in dipnicogen (H2E-EH2)2 and dichalcogen (HE-EH)2 hydride model dimers. Inorg Chem 34:4134–4138Google Scholar
  11. 11.
    Carré F, Chuit C, Corriu RJP, Monforte P, Nayyar NK, Reyé C (1995) Intramolecular coordination at phosphorus: donor-acceptor interaction in three- and four-coordinated phosphorus compounds. J Organomet Chem 499:147–154Google Scholar
  12. 12.
    Galasso V (2004) Theoretical study of the structure and bonding in phosphatrane molecules. J Phys Chem A 108:4497–4504Google Scholar
  13. 13.
    Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292Google Scholar
  14. 14.
    Ganesamoorthy C, Balakrishna MS, Mague JT, Tuononen HM (2008) New tetraphosphane ligands {(X2P)2NC6H4N(PX2)2} (X = Cl, F, OMe, OC6H4OMe-o): synthesis, derivatization, group 10 and 11 metal complexes and catalytic investigations. DFT calculations on intermolecular P···P interactions in halo-phosphines. Inorg Chem 47:7035–7047Google Scholar
  15. 15.
    Moilanen J, Ganesamoorthy C, Balakrishna MS, Tuononen HM (2009) Weak interactions between trivalent pnictogen centers: computational analysis of bonding in dimers X3E···EX3 (E = Pnictogen, X = Halogen). Inorg Chem 48:6740–6747Google Scholar
  16. 16.
    Scheiner S (2011) A new noncovalent force: comparison of P···N interaction with hydrogen and halogen bonds. J Chem Phys 134:094315Google Scholar
  17. 17.
    Bauer S, Tschirschwitz S, Lönnecke P, Frank R, Kirchner B, Clarke ML, Hey-Hawkins E (2009) Enantiomerically pure bis(phosphanyl)carbaborane(12) compounds. Eur J Inorg Chem 2009:2776–2788Google Scholar
  18. 18.
    Tschirschwitz S, Lonnecke P, Hey-Hawkins E (2007) Aminoalkylferrocenyldichlorophos-phanes: facile synthesis of versatile chiral starting materials. Dalton Trans 1377–1382Google Scholar
  19. 19.
    Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-cloro-dodecaboranes with short P···P distances. Inorg Chem Commun 10:713–716Google Scholar
  20. 20.
    LaBarge MS, Andrews AM, Taleb-Bendiab A, Hillig KW, Kuczkowski RL, Bohn RK (1991) Microwave spectrum, structure, and dipole moment of the phosphorus trifluoride-water complex. J Phys Chem 95:3523–3527Google Scholar
  21. 21.
    Politzer P, Murray J, Janjić G, Zarić S (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31Google Scholar
  22. 22.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187Google Scholar
  23. 23.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen Complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731Google Scholar
  24. 24.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Structures, binding energies, and spin–spin coupling constants of geometric isomers of pnicogen homodimers (PHFX)2, X = F, Cl, CN, CH3, NC. J Phys Chem A 116:3056–3060Google Scholar
  25. 25.
    Del Bene JE, Sanchez-Sanz G, Alkorta I, Elguero J (2012) Homo- and heterochiral dimers (PHFX)2, X = Cl, CN, CH3, NC: to what extent do they differ? Chem Phys Lett 538:14–18Google Scholar
  26. 26.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theory Comput 8:2320–2327Google Scholar
  27. 27.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Interplay of F–H···F hydrogen bonds and P···N pnicogen bonds. J Phys Chem A 116:9205–9213Google Scholar
  28. 28.
    Blanco F, Alkorta I, Rozas I, Solimannejad M, Elguero J (2011) A theoretical study of the interactions of NF3 with neutral ambidentate electron donor and acceptor molecules. Phys Chem Chem Phys 13:674–683Google Scholar
  29. 29.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2013) Exploring (NH2F)2, H2FP:NFH2, and (PH2F)2 potential surfaces: hydrogen bonds or pnicogen bonds? J Phys Chem A 117:183–191Google Scholar
  30. 30.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2013) Phosphorus as a simultaneous electron-pair acceptor in intermolecular P···N pnicogen bonds and electron-pair donor to lewis acids. J Phys Chem A 117:3133–3141Google Scholar
  31. 31.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2. J Phys Chem A 117:4981–4987Google Scholar
  32. 32.
    Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2013) Intramolecular pnicogen interactions in PHF-(CH2)n-PHF (n = 2–6) systems. ChemPhysChem 14:1656–1665Google Scholar
  33. 33.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen BASES. J Phys Chem A 117:10497–10503Google Scholar
  34. 34.
    Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C=PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2. J Phys Chem A 117:6893–6903Google Scholar
  35. 35.
    Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes H2C=(X)P:PXH2, for X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2: P···P pnicogen bonding at σ-holes and π-holes. J Phys Chem A 117:11592–11604Google Scholar
  36. 36.
    Del Bene J, Alkorta I, Elguero J (2014) σ–σ and σ–π pnicogen bonds in complexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3, and H. Theor Chem Acc 133:1–9Google Scholar
  37. 37.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2014) Pnicogen bonds between X = PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537Google Scholar
  38. 38.
    Del Bene JE, Alkorta I, Elguero J (2014) Influence of substituent effects on the formation of P···Cl pnicogen bonds or halogen bonds. J Phys Chem A 118:2360–2366Google Scholar
  39. 39.
    Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–3392Google Scholar
  40. 40.
    Azofra LM, Alkorta I, Elguero J (2014) Chiral discrimination in dimers of diphosphines (PH2-PH2 and PH2-PHF). ChemPhysChem in press 15:33663–3670. doi:10.1002/cphc.201402086Google Scholar
  41. 41.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2014) Intramolecular pnicogen interactions in phosphorus and arsenic analogues of proton sponges. Phys Chem Chem Phys in press 16:15900–15909. doi:10.1039/C4CP01072HGoogle Scholar
  42. 42.
    Grabowski SJ, Alkorta I, Elguero J (2013) Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction. J Phys Chem A 117:3243–3251Google Scholar
  43. 43.
    Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953Google Scholar
  44. 44.
    Bauzá A, Alkorta I, Frontera A, Elguero J (2013) On the reliability of pure and hybrid DFT methods for the evaluation of halogen, chalcogen, and pnicogen bonds involving anionic and neutral electron donors. J Chem Theory Comput 9:5201–5210Google Scholar
  45. 45.
    Solimannejad M, Gharabaghi M, Scheiner S (2011) SH···N and SH···P blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:024312Google Scholar
  46. 46.
    Scheiner S (2011) Effects of substituents upon the P···N noncovalent interaction: the limits of Its STRENGTH. J Phys Chem A 115:11202–11209Google Scholar
  47. 47.
    Adhikari U, Scheiner S (2012) Substituent effects on Cl···N, S···N, and P···N noncovalent bonds. J Phys Chem A 116:3487–3497Google Scholar
  48. 48.
    Adhikari U, Scheiner S (2012) Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–35Google Scholar
  49. 49.
    Scheiner S (2011) Can two trivalent N atoms engage in a direct N···N noncovalent interaction? Chem Phys Lett 514:32–35Google Scholar
  50. 50.
    Adhikari U, Scheiner S (2011) Comparison of P···D (D = P, N) with other noncovalent bonds in molecular aggregates. J Chem Phys 135:184306Google Scholar
  51. 51.
    Scheiner S (2011) Weak H-bonds. Comparisons of CHO to NHO in proteins and PHN to direct PN interactions. Phys Chem Chem Phys 13:13860–13872Google Scholar
  52. 52.
    Scheiner S (2011) Effects of multiple substitution upon the P···N noncovalent interaction. Chem Phys 387:79–84Google Scholar
  53. 53.
    Scheiner S (2012) Extrapolation to the complete basis set limit for binding energies of noncovalent interactions. Comp Theor Chem 998:9–13Google Scholar
  54. 54.
    Scheiner S (2011) On the properties of X···N noncovalent interactions for first-, second-, and third-row X atoms. J Chem Phys 134:164313Google Scholar
  55. 55.
    Scheiner S (2013) Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 15:3119–3124Google Scholar
  56. 56.
    Scheiner S (2012) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288Google Scholar
  57. 57.
    Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620Google Scholar
  58. 58.
    Bauza A, Quinonero D, Deya PM, Frontera A (2012) Pnicogen-π complexes: theoretical study and biological implications. Phys Chem Chem Phys 14:14061–14066Google Scholar
  59. 59.
    Bauzá A, Ramis R, Frontera A (2014) A combined theoretical and cambridge structural database study of π-hole pnicogen bonding complexes between electron rich molecules and both nitro compounds and inorganic bromides (YO2Br, Y = N, P, and As). J Phys Chem A 118:2827–2834Google Scholar
  60. 60.
    Bauza A, Quinonero D, Deya PM, Frontera A (2013) Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 15:3137–3144Google Scholar
  61. 61.
    Solimannejad M, Gholipour A (2013) Revealing substituent effects on the concerted interaction of pnicogen, chalcogen, and halogen bonds in substituted s-triazine ring. Struct Chem 24:17051711Google Scholar
  62. 62.
    Solimannejad M, Bayati E, Esrafili MD (2014) Enhancement effect of lithium bonding on the strength of pnicogen bonds: XH2P···NCLi···NCY as a working model (X = F, Cl; Y = H, F, Cl, CN). Mol Phys 112:2058–2062Google Scholar
  63. 63.
    Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Competition and interplay between σ-Hole and π-Hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with Ammonia. J Phys Chem A 116:5199–5206Google Scholar
  64. 64.
    Grabowski SJ (2013) σ-Hole bond versus hydrogen bond: from tetravalent to pentavalent N, P, and As atoms. Chem Eur J 19:14600–14611Google Scholar
  65. 65.
    Grabowski SJ (2014) Clusters of ammonium cation-hydrogen bond versus σ-hole bond. ChemPhysChem 15:876–884Google Scholar
  66. 66.
    Li Q-Z, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Pnicogen–hydride interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li, and Na). J Phys Chem A 116:2547–2553Google Scholar
  67. 67.
    Li Q-Z, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Concerted interaction between pnicogen and halogen bonds in XCl-FH2P-NH3 (X = F, OH, CN, NC, and FCC). ChemPhysChem 13:1205–1212Google Scholar
  68. 68.
    An X-L, Li R, Li Q-Z, Liu X-F, Li W-Z, Cheng J-B (2012) Substitution, cooperative, and solvent effects on π pnicogen bonds in the FH(2)P and FH(2)As complexes. J Mol Model 18:4325–4332Google Scholar
  69. 69.
    Li Q, Zhuo H, Yang X, Cheng J, Li W, Loffredo RE (2014) Cooperative and diminutive effects of pnicogen bonds and cation–π interactions. ChemPhysChem 15:500–506Google Scholar
  70. 70.
    Liu X, Cheng J, Li Q, Li W (2013) Competition of hydrogen, halogen, and pnicogen bonds in the complexes of HArF with XH2P (X = F, Cl, and Br). Spectrochim Acta Part A Mol Biomol Spectros 101:172–177Google Scholar
  71. 71.
    Chen Y, Yao L, Lin X (2014) Theoretical study of (FH2X)n·Y (X = P and As, n = 1–4, Y = F, Cl, Br, I, NO3 and SO4 2–): the possibility of anion recognition based on pnicogen bonding. Comput Theor Chem 1036:44–50Google Scholar
  72. 72.
    Guan L, Mo Y (2014) Electron transfer in pnicogen bonds. J Phys Chem A 118:8911–8921.Google Scholar
  73. 73.
    Eskandari K, Mahmoodabadi N (2013) Pnicogen bonds: a theoretical study based on the laplacian of electron density. J Phys Chem A 117:13018–13024Google Scholar
  74. 74.
    Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem Quantum Chem Symp 10:1–19Google Scholar
  75. 75.
    Krishnan R, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100Google Scholar
  76. 76.
    Bartlett RJ, Silver DM (1975) Many–body perturbation theory applied to electron pair correlation energies. I. closed‐shell first–row diatomic hydrides. J Chem Phys 62:3258–3268Google Scholar
  77. 77.
    Bartlett RJ, Purvis GD (1978) Many–body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int J Quantum Chem 14:561–581Google Scholar
  78. 78.
    Del Bene JE (1993) Proton affinities of ammonia, water, and hydrogen fluoride and their anions: a quest for the basis-set limit using the dunning augmented correlation-consistent basis sets. J Phys Chem 97:107–110Google Scholar
  79. 79.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023Google Scholar
  80. 80.
    Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core–valence basis sets for boron through neon. J Chem Phys 103:4572–4585Google Scholar
  81. 81.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman, JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian, Inc.: Wallingford CT,. Gaussian-09, Revision A.01Google Scholar
  82. 82.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928Google Scholar
  83. 83.
    Bader RFW (1990) Atoms in molecules, A quantum theory. Oxford University, OxfordGoogle Scholar
  84. 84.
    Popelier PLA (2000) Atoms In molecules. An introduction. Prentice Hall, Harlow, EnglandGoogle Scholar
  85. 85.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, WeinheimGoogle Scholar
  86. 86.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686Google Scholar
  87. 87.
    Todd A, Keith TK (2011) Gristmill Software, Overland Park KS, USA. http://aim.tkgristmill.com. Accessed 1 Aug 2013 (AIMAll (Version 11.08.23))
  88. 88.
    Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod PackageGoogle Scholar
  89. 89.
    Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161Google Scholar
  90. 90.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926Google Scholar
  91. 91.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. University of Wisconsin Press, MadisonGoogle Scholar
  92. 92.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. University of Wisconsin Press. MadisonGoogle Scholar
  93. 93.
    Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652Google Scholar
  94. 94.
    Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789Google Scholar
  95. 95.
    Jmol: an open-source Java viewer for chemical structures in 3D, version 13.0. http://www.jmol.org/. Accessed 26 Sept 2013
  96. 96.
    Patek M “Jmol NBO Visualization Helper” program. http://www.marcelpatek.com/nbo/nbo.html. Accessed 26 Sept 2013
  97. 97.
    Perera SA, Nooijen M, Bartlett RJ (1996) Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants. J Chem Phys 104:3290–3305Google Scholar
  98. 98.
    Perera SA, Sekino H, Bartlett RJ (1994) Coupled–cluster calculations of indirect nuclear coupling constants: the importance of non–fermi contact contributions. J Chem Phys 101:2186–2196Google Scholar
  99. 99.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577Google Scholar
  100. 100.
    Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PS, Lauderdale WJ, Gwaltney SR, Beck S, Balkova A, Bernholdt DE, Baeck KK, Tozyczko P, Sekino H, Huber C, Bartlett RJ ACES II is a program product of the Quantum Theory Project, University of Florida. Integral packages included are VMOL (Almlöf J, Taylor PR); VPROPS (Taylor PR); ABACUS (Helgaker T, Jensen Aa HJ, Jørgensen P, Olsen J, Taylor PR). Brillouin-Wigner perturbation theory was implement by Pittner JGoogle Scholar
  101. 101.
    Knop O, Boyd RJ, Choi SC (1988) Sulfur-sulfur bond lengths, or can a bond length be estimated from a single parameter? J Am Chem Soc 110:7299–7301Google Scholar
  102. 102.
    Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Power law relationships between bond length, bond strength and electron density distributions. Phys Chem Miner 25:585–590Google Scholar
  103. 103.
    Alkorta I, Barrios L, Rozas I, Elguero J (2000) Comparison of models to correlate electron density at the bond critical point and bond distance. Theochem 496:131–137Google Scholar
  104. 104.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving H···F systems. Part I: the transit region between pure closed-shell and shared-shell interactions. J Chem Phys 117:5529–5542Google Scholar
  105. 105.
    Alkorta I, Elguero J (2004) Fluorine-fluorine interactions: a NMR and AIM analysis. Struct Chem 15:117–120Google Scholar
  106. 106.
    Tang TH, Deretey E, Knak Jensen SJ, Csizmadia IG (2006) Hydrogen bonds: relation between lengths and electron densities at bond critical points. Eur Phys J D 37:217–222Google Scholar
  107. 107.
    Vener MV, Manaev AV, Egorova AN, Tsirelson VG (2007) QTAIM study of strong H-bonds with the O–H···A fragment (A = O, N) in three-dimensional periodical crystals. J Phys Chem A 111:1155–1162Google Scholar
  108. 108.
    Castillo N, Robertson KN, Choi SC, Boyd RJ, Knop O (2008) Bond length and the electron density at the bond critical point: X-X, Z-Z, and C-Z bonds (X = Li-F, Z = Na-Cl). J Comput Chem 29:367–379Google Scholar
  109. 109.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H···X (X = H, C, N, O, F, S, Cl, π) interactions. Chem Eur J 16:2442–2452Google Scholar
  110. 110.
    Zeng Y, Li X, Zhang X, Zheng S, Meng L (2011) Insight into the Nature of the interactions of furan and thiophene with hydrogen halides and lithium halides: Ab INITIO and QTAIM studies. J Mol Model 17:2907–2918Google Scholar
  111. 111.
    Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1259–1281Google Scholar
  112. 112.
    Hankins D, Moskowitz JW, Stillinger FH (1970) Water molecule interactions. J Chem Phys 53:4544–4554Google Scholar
  113. 113.
    Xantheas S (1994) Ab Initio studies of cyclic water clusters (H2O)N, N = 1–6. II. Analysis of many–body interactions. J Chem Phys 100:7523–7534Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryYoungstown State UniversityYoungstownUSA
  2. 2.Instituto de Química Médica (IQM-CSIC)MadridSpain

Personalised recommendations