Advertisement

Portable Optically Tracked Ultrasound System for Scoliosis Measurement

  • Guillermo Carbajal
  • Álvaro Gómez
  • Gabor FichtingerEmail author
  • Tamas Ungi
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 20)

Abstract

Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favorable over X-ray because it does not emit ionizing radiation. It has been shown in the past that tracked ultrasound can be used to localize vertebral transverse processes as landmarks along the spine to measure curvature angles. Tests have been performed with spine phantoms, but scanning protocol, tracking system, data acquisition and processing time has not been considered in human subjects yet. In this paper, a portable optically tracked ultrasound system for scoliosis measurement is presented. It provides a simple way to acquire data in the clinical environment with the aim of comparing results to current X-ray-based measurement. The workflow of the procedure was tested on volunteers. The customized open-source software is shared with the community as part of our effort to make a clinically practical system.

Keywords

Adolescent idiopathic kyphoscoliosis Scoliosis Kyphosis Tracked sonography Tracked ultrasound snapshot 

Notes

Acknowledgments

This work was supported in part by the Canada-Latin America Research Exchange Grant (LACREG) program. Comision Sectorial de Investigacion Cientıfica (CSIC, Universidad de la Republica, Uruguay) supported the internship of G. Carbajal at Perklab.

References

  1. 1.
    Nery, L.S., Halpern, R., Nery, P.C., Nehme, K.P., Stein, A.T.: Prevalence of scoliosis among school students in a town in southern Brazil. Sao Paulo Med. J. 128(2), 69–73 (2010)CrossRefGoogle Scholar
  2. 2.
    Suh, S.W., Modi, H.N., Yang, J.H., Hong, J.Y.: Idiopathic scoliosis in Korean schoolchildren: a prospective screening study of over 1 million children. Eur. Spine J. 20(7), 1087–1094 (2011)CrossRefGoogle Scholar
  3. 3.
    Wong, H.K., Hui, J.H., Rajan, U., Chia, H.P.: Idiopathic scoliosis in Singapore schoolchildren: a prevalence study 15 years into the screening program. Spine (Phila Pa 1976). 30(10), 1188–96 (2005)Google Scholar
  4. 4.
    Ward, K., Ogilvie, J.W., Singleton, M.V., Chettier, R., Engler, G., Nelson, L.M.: Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 35(25), E1455–64 (2010)Google Scholar
  5. 5.
    Aartun, E., Degerfalk, A., Kentsdotter, L., Hestbaek, L.: Screening of the spine in adolescents: inter- and intra-rater reliability and measurement error of commonly used clinical tests. BMC Musculoskelet. Disord. 10(15), 37 (2014)CrossRefGoogle Scholar
  6. 6.
    Doody, M.M., Lonstein, J.E., Stovall, M., Hacker, D.G., Luckyanov, N., Land, C.E.: Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort study. Spine (Phila Pa 1976). 25(16), 2052–63 (2000)Google Scholar
  7. 7.
    Hoffman, D.A., Lonstein, J.E., Morin, M.M., Visscher, W., Harris 3rd, B.S., Boice Jr, J.D.: Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J. Natl. Cancer Inst. 81(17), 1307–1312 (1989)CrossRefGoogle Scholar
  8. 8.
    Schmitz-Feuerhake, I., Pflugbeil, S.: ‘Lifestyle’ and cancer rates in former East and West Germany: the possible contribution of diagnostic radiation exposures. Radiat. Prot. Dosim. 147(1–2), 310–313 (2011)CrossRefGoogle Scholar
  9. 9.
    Diefenbach, C., Lonner, B.S., Auerbach, J.D., Bharucha, N., Dean, L.E.: Is radiation-free diagnostic monitoring of adolescent idiopathic scoliosis feasible using upright positional magnetic resonance imaging? Spine (Phila Pa 1976). 38(7), 576–80 (2013)Google Scholar
  10. 10.
    Goldberg, C.J., Kaliszer, M., Moore, D.P., Fogarty, E.E., Dowling, F.E.: Surface topography, Cobb angles, and cosmetic change in scoliosis. Spine (Phila Pa 1976). 26(4), E55–63 (2001)Google Scholar
  11. 11.
    Frerich, J.M., Hertzler, K., Knott, P., Mardjetko, S.: Comparison of radiographic and surface topography measurements in adolescents with idiopathic scoliosis. Open Orthop. J. 6, 261–265 (2012)CrossRefGoogle Scholar
  12. 12.
    Suzuki, S., Yamamuro, T., Shikata, J., Shimizu, K., Iida, H.: Ultrasound measurement of vertebral rotation in idiopathic scoliosis. J. Bone Jt. Surg. Br. 71(2), 252–255 (1989)Google Scholar
  13. 13.
    Li, M., Cheng, J., Ying, M., Ng, B., Zheng, Y.P., Lam, T.P., Wong, W.Y., Wong, M.S.: Application of 3-D ultrasound in assisting the fitting procedure of spinal orthosis to patients with adolescent idiopathic scoliosis. Stud. Health Technol. Inform. 158, 34–37 (2010)Google Scholar
  14. 14.
    Chen, W., Lou, E.H., Le, L.H.: Using ultrasound imaging to identify landmarks in vertebra models to assess spinal deformity. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 8495–8498 (2011)Google Scholar
  15. 15.
    Purnama, K.E., Wilkinson, M.H., Veldhuizen, A.G., van Ooijen, P.M., Lubbers, J., Burgerhof, J.G., Sardjono, T.A., Verkerke, G.J.: A framework for human spine imaging using a freehand 3D ultrasound system. Technol. Health Care 18(1), 1–17 (2010)Google Scholar
  16. 16.
    Ungi, T., King, F., Kempston, M., Keri, Z., Lasso, A., Mousavi, P., Rudan, J., Borschneck, D.P., Fichtinger, G.: Spinal curvature measurement by tracked ultrasound snapshots. Ultrasound Med. Biol. 40(2), 447–454 (2014)CrossRefGoogle Scholar
  17. 17.
    Ungi, T., Abolmaesumi, P., Jalal, R., Welch, M., Ayukawa, I., Nagpal, S., Lasso, A., Jaeger, M., Borschneck, D.P., Fichtinger, G., Mousavi, P.: Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans. Biomed. Eng. 59(10), 2766–2772 (2012)CrossRefGoogle Scholar
  18. 18.
    Ungi, T., Moult, E., Schwab, J.H., Fichtinger, G.: Tracked ultrasound snapshots in percutaneous pedicle screw placement navigation: a feasibility study. Clin. Orthop. Relat. Res. 471(12), 4047–4055 (2013)CrossRefGoogle Scholar
  19. 19.
    Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., Fichtinger, G.: PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans. Biomed. Eng. (In press)Google Scholar
  20. 20.
    Tokuda, J., Fischer, G.S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., Liu, H., Blevins, J., Arata, J., Golby, A.J., Kapur, T., Pieper, S., Burdette, E.C., Fichtinger, G., Tempany, C.M., Hata, N.: OpenIGTLink: an open network protocol for image-guided therapy environment. Int. J. Med. Robot. 5(4), 423–434 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guillermo Carbajal
    • 1
  • Álvaro Gómez
    • 1
  • Gabor Fichtinger
    • 2
    Email author
  • Tamas Ungi
    • 2
  1. 1.Instituto de Ingeniería Eléctrica Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratory for Percutaneous Surgery, School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations