Generating Specialized Interpreters for Modular Structural Operational Semantics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8901)

Abstract

Modular Structural Operational Semantics (MSOS) is a variant of Structural Operational Semantics (SOS). It allows language constructs to be specified independently, such that no reformulation of existing rules in an MSOS specification is required when a language is extended with new constructs and features.

Introducing the Prolog MSOS Tool, we recall how to synthesize executable interpreters from small-step MSOS specifications by compiling MSOS rules into Prolog clauses. Implementing the transitive closure of compiled small-step rules gives an executable interpreter in Prolog. In the worst case, such interpreters traverse each intermediate program term in its full depth, resulting in a significant overhead in each step.

We show how to transform small-step MSOS specifications into corresponding big-step specifications via a two-step specialization by internalizing the rules implementing the transitive closure in MSOS and ‘refocusing’ the small-step rules. Specialized specifications result in generated interpreters with significantly reduced interpretive overhead.

Keywords

Interpreter generation Structural operational semantics Modular SOS Specialization Partial evaluation Program derivation Refocusing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling. Prentice-Hall, Inc. (1972)Google Scholar
  2. 2.
    Bach Poulsen, C., Mosses, P.D.: Deriving pretty-big-step semantics from small-step semantics. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 270–289. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Chalub, F., Braga, C.: Maude MSOS tool. ENTCS 176(4), 133–146 (2007)Google Scholar
  4. 4.
    Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and Systems. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Churchill, M., Mosses, P.D.: Modular bisimulation theory for computations and values. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 97–112. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Clavel2008maudemanual Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude manual (version 2.6) (2008). http://maude.cs.uiuc.edu/maude2-manual/
  7. 7.
    Clement, D., Despeyroux, J., Despeyroux, T., Hascoet, L., Kahn, G.: Natural semantics on the computer. Research Report RR-0416, INRIA (1985)Google Scholar
  8. 8.
    Danvy, O.: From reduction-based to reduction-free normalization. In: Koopman, P., Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 66–164. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. BRICS Research Series RS-04-26, Dept. of Computer Science, Aarhus University (2004)Google Scholar
  10. 10.
    Gallagher, J.P.: Tutorial on specialisation of logic programs. In: PEPM 1993, pp. 88–98. ACM (1993)Google Scholar
  11. 11.
    Gupta, G.: Horn logic denotations and their applications. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm. Artificial Intelligence, pp. 127–159. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Leuschel, M., Jorgensen, J., Vanhoof, W., Bruynooghe, M.: Offline specialisation in Prolog using a hand-written compiler generator. TPLP 4(1), 139–191 (2004)MATHGoogle Scholar
  13. 13.
    Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log. Program. 11(3–4), 217–242 (1991)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Mosses, P.D.: Foundations of Modular SOS. BRICS Research Series RS-99-54, Dept. of Computer Science, Aarhus University (1999)Google Scholar
  15. 15.
    Mosses, P.D.: Pragmatics of Modular SOS. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 21–40. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program. 60–61, 195–228 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mosses, P.D.: Teaching semantics of programming languages with Modular SOS. In: Boca, P., Bowen, J.P., Duce, D.A. (eds.) TFM 2006. Electr. Workshops in Comput, BCS (2006)Google Scholar
  18. 18.
    Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under operational extensions. In: Fröschle, S.B., Valencia, F.D. (eds.) EXPRESS 2010. EPTCS, vol. 41, pp. 106–120 (2010)Google Scholar
  19. 19.
    Mosses, P.D., New, M.J.: Implicit propagation in structural operational semantics. ENTCS 229(4), 49–66 (2009)Google Scholar
  20. 20.
    Pettersson, M. (ed.): Compiling Natural Semantics. LNCS, vol. 1549. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60–61, 17–139 (2004)MathSciNetGoogle Scholar
  22. 22.
    Wang, Q., Gupta, G., Leuschel, M.: Towards provably correct code generation via horn logical continuation semantics. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 98–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceSwansea UniversitySwanseaUK

Personalised recommendations