A Benchmarking Model for Sensors in Smart Environments

  • Andreas Braun
  • Reiner Wichert
  • Arjan Kuijper
  • Dieter W. Fellner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8850)

Abstract

In smart environments, developers can choose from a large variety of sensors supporting their use case that have specific advantages or disadvantages. In this work we present a benchmarking model that allows estimating the utility of a sensor technology for a use case by calculating a single score, based on a weighting factor for applications and a set of sensor features. This set takes into account the complexity of smart environment systems that are comprised of multiple subsystems and applied in non-static environments. We show how the model can be used to find a suitable sensor for a use case and the inverse option to find suitable use cases for a given set of sensors. Additionally, extensions are presented that normalize differently rated systems and compensate for central tendency bias. The model is verified by estimating technology popularity using a frequency analysis of associated search terms in two scientific databases.

Keywords:

Benchmark Smart environments Modeling Sensor technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camp, R.C.: Benchmarking: the search for industry best practices that lead to superior performance. Quality Press, Milwaukee (1989)Google Scholar
  2. 2.
    Lewis, B.C., Crews, A.E.: The evolution of benchmarking as a computer performance evaluation technique. MIS Q, 7–16 (1985)Google Scholar
  3. 3.
    Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future. Concurr. Comput. Pract. Exp. 15, 803–820 (2003)CrossRefGoogle Scholar
  4. 4.
    Weicker, R.P.: Dhrystone: A synthetic systems programming benchmark. Commun. ACM 27, 1013–1030 (1984)CrossRefGoogle Scholar
  5. 5.
    Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millennium. Computer (Long. Beach. Calif.) 33, 28–35 (2000)Google Scholar
  6. 6.
    Smith, J.E.: Characterizing computer performance with a single number. Commun. ACM 31, 1202–1206 (1988)CrossRefGoogle Scholar
  7. 7.
    Crolotte, A.: Issues in Benchmark Metric Selection. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 146–152. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Jain, R.: The art of computer systems performance analysis. John Wiley & Sons, Chichester (1991)Google Scholar
  9. 9.
    Ranganathan, A., Al-Muhtadi, J., Biehl, J., Ziebart, B., Campbell, R.H., Bailey, B.: Towards a pervasive computing benchmark. In: Proceedings PerCom, pp. 194–198 (2005)Google Scholar
  10. 10.
    Barsocchi, P., Chessa, S., Furfari, F., Potorti, F.: Evaluating Ambient Assisted Living Solutions: The Localization Competition. IEEE Pervasive Comput. 12, 72–79 (2013)CrossRefGoogle Scholar
  11. 11.
    Santos, R.M., de Oliveira, K.M., Andrade, R.M.C., Santos, I.S., Lima, E.R.: A Quality Model for Human-Computer Interaction Evaluation in Ubiquitous Systems. In: Collazos, C., Liborio, A., Rusu, C. (eds.) CLIHC 2013. LNCS, vol. 8278, pp. 63–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Jafari, S., Mtenzi, F., O’Driscoll, C., Fitzpatrick, R., O’Shea, B.: Measuring Privacy in Ubiquitous Computing Applications. Int. J. Digit. Soc. 2, 547–550 (2011)Google Scholar
  13. 13.
    Wilson, J.S.: Sensor technology handbook. Elsevier (2004)Google Scholar
  14. 14.
    Braun, A., Wichert, R., Kuijper, A., Fellner, D.W.: Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. (in press)Google Scholar
  15. 15.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378 (1971)CrossRefGoogle Scholar
  16. 16.
    Landsiedel, O., Wehrle, K., Götz, S.: Accurate prediction of power consumption in sensor networks. In: Proceedings Workshop on Embedded Networked Sensors (2005)Google Scholar
  17. 17.
    Bertozzi, M., Broggi, A.: GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998)CrossRefGoogle Scholar
  18. 18.
    Crawford, L.E., Huttenlocher, J., Engebretson, P.H.: Category effects on estimates of stimuli: Perception or reconstruction? Psychol. Sci. 11, 280–284 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Braun
    • 1
  • Reiner Wichert
    • 1
  • Arjan Kuijper
    • 1
    • 2
  • Dieter W. Fellner
    • 1
    • 2
  1. 1.Fraunhofer Institute for Computer Graphics Research IGDDarmstadtGermany
  2. 2.TU DarmstadtDarmstadtGermany

Personalised recommendations