Discrete Control for Smart Environments Through a Generic Finite-State-Models-Based Infrastructure

  • Mengxuan Zhao
  • Gilles Privat
  • Eric Rutten
  • Hassane Alla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8850)

Abstract

Drawing requirements and models from reactive and real-time systems, we propose a self-configurable data mediation infrastructure for Smart Environments and the Internet of Things, showing how it can be used to effect discrete control in smart home environments by mediating and adapting generic rules through finite-state-machine models drawn from a domain ontology, representing observable & controllable “things” and space entities in this infrastructure.

Keywords

System architecture Middleware Domain ontologies Discrete-event control Finite-state automata Reactive systems Control theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streitz, N., Privat, G.: Ambient Intelligence. In: Stephanidis, C. (ed.) The Universal Access Handbook, pp. 60.1–60.17. CRC Press, Taylor & Francis Group (2009)Google Scholar
  2. 2.
    Halbwachs, N.: Synchronous Programming of Reactive Systems, vol. 215. Springer (1992)Google Scholar
  3. 3.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer (2008)Google Scholar
  4. 4.
    Gomez, C., Paradells, J.: Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine 48(6), 92–101 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhao, M., Privat, G., Rutten, E., Alla, H.: Discrete control for the internet of things and smart environments. In: 8th International Workshop on Feedback Computing. USENIX, Berkeley, CA (2013)Google Scholar
  6. 6.
    Joumaa, H., De-Oliviera, G., Ploix, S., Jacomino, M.: Energy management problem in dwellings: combining centralized and distributed solving approaches. In: 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1–8. IEEE (2012)Google Scholar
  7. 7.
    Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De Simone, R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83 (2003)CrossRefGoogle Scholar
  8. 8.
    Delaval, G., Rutten, E., Marchand, H.: Integrating discrete controller synthesis into a reactive programming language compiler. Discrete Event Dynamic Systems 23(4), 385–418 (2013)CrossRefMATHGoogle Scholar
  9. 9.
    Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of the IEEE 77(1), 81–98 (1989)CrossRefGoogle Scholar
  10. 10.
    Hu, Z., Privat, G., Frenot, S., Tourancheau, B.: Self-configuration of home abstraction layer via sensor-actuator network. In: Keyson, D.V., Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G., Aghajan, H., Kröse, B.J. (eds.) AmI 2011. LNCS, vol. 7040, pp. 146–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Dolog, P.: Model-driven navigation design for semantic web applications with the uml-guide. In: ICWE Workshops, pp. 75–86 (2004)Google Scholar
  12. 12.
    Samek, M., Montgomery, P.Y.: State oriented programming. Embedded Systems Programming 13(8), 22–43 (2000)Google Scholar
  13. 13.
    Martin, M., Nurmi, P.: A generic large scale simulator for ubiquitous computing. In: MobiQuitous 2006. IEEE Computer Society, San Jose, California, USA (July 2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mengxuan Zhao
    • 1
  • Gilles Privat
    • 1
  • Eric Rutten
    • 2
  • Hassane Alla
    • 3
  1. 1.Orange LabsMeylanFrance
  2. 2.INRIA GrenobleMontbonnot, St IsmierFrance
  3. 3.GIPSA-LabSaint Martin d’Hères CedexFrance

Personalised recommendations