The Subvolcanic Units of the Late Paleozoic Halle Volcanic Complex, Germany: Geometry, Internal Textures and Emplacement Mode

  • Christoph Breitkreuz
  • Bodo-Carlo Ehling
  • Nicole Pastrik
Chapter
Part of the Advances in Volcanology book series (VOLCAN)

Abstract

The Late Paleozoic Halle Volcanic Complex formed in the Saale basin, a NE-SW-trending intermountain depositional system located in the Variscan orogen in Central Europe. Apart from minor lava flows and pyroclastic deposits, the HVC is dominated by a c. 300 km³ rhyolitic laccolith complex. The individual porphyritic rhyolite units display aspect ratios between 0.04 and 0.07. They initially emplaced at different levels of the Saale basin fill. As a consequence, the units are separated by tilted host sediments. Precursory to the emplacement of the rhyolitic laccoliths, a small-volume intermediate sill complex formed at the northern margin of the HVC. This chapter summarizes knowledge on the geometry, composition, internal textures, age, and host rock deformation of the HVC subvolcanic units.

Notes

Acknowledgments

This contribution is in parts based on a number of unpublished diploma theses, among these the excellent theses of Marion Geißler, Dietrich Lange and Alexander Mock, carried out under the supervision by two of us (C.B. and B.-C.E.). In this context, we highly acknowledge co-supervision of diploma thesis by Peggy Melzer and Hajo Götze. We highly appreciate permission for access and sampling of wells of the WISMUT GmbH and the Bundesanstalt für Geologie und Rohstoffe (BGR) in Berlin-Spandau. Thoughtful reviews by John Hogan and Sergio Rocchi were very helpful to improve the text.

References

  1. Awdankiewicz M (2004) Sedimentation, volcanism and subvolcanic intrusions in a late Palaeozoic intramontane trough (The Intra-Sudetic Basin, SW Poland). Geol Soc Lond Spec Publ 234:5–11CrossRefGoogle Scholar
  2. Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). Geol Soc Spec Publ 234:5–12CrossRefGoogle Scholar
  3. Brecht G (1999) Authigene Phyllosilikate in permokarbonen SiO2-reichen Vulkaniten Ostdeutschlands. Berl Geowiss Abhandl A201:1–181Google Scholar
  4. Breitkreuz C (2013) Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks. Bull Volcanol 75:1–16CrossRefGoogle Scholar
  5. Breitkreuz C, Mock A (2004) Are laccolith complexes characteristic of transtensional basin systems?—Examples from Permocarboniferous Central Europe. Geol Soc Spec Publ 234:13–32CrossRefGoogle Scholar
  6. Breitkreuz C, Ehling B-C, Sergeev S (2009) Chronological evolution of an intrusive/extrusive system: the Late Paleozoic Halle Volcanic Complex in the north-eastern Saale Basin (Germany). Zeitschr dt Gesell Geowiss 160:173–190Google Scholar
  7. Corry CE (1988) Laccoliths; mechanics of emplacement and growth. Spec Pap Geol Soc Am 220:1–110Google Scholar
  8. de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophys 500:20–33Google Scholar
  9. Ehling B-C, Bachmann G (2006) Geologie von Halle (Saale) (Exkursion A am 18. April 2006). Jber Mitt oberrhein geol Ver N F 88:121–144CrossRefGoogle Scholar
  10. Ehling B-C, Breitkreuz C (2006) Das klassische Rotliegend bei Halle (Saale): Sedimentation und Vulkanismus im neuen Licht (Exkursion K am 21. April 2006). Jber Mitt oberrhein geol Ver N F 88:369–404CrossRefGoogle Scholar
  11. Ehling B-C, Gebhardt U (2012) Rotliegend im Saale-Becken. Schriftenr Deutsch Gesell Geowiss H 61:504–516Google Scholar
  12. Exner M, Schwab M (2000) Der Wettin-Rhyolith - Beitrag zur Oberflächenverbreitung und Entstehung eines Halleschen Quarzporphyrs. Hercynia 33:173–190Google Scholar
  13. Gebhardt U, Lützner H (2012) Innervariscische Rotliegendbecken und Norddeutsches Becken - Fragen ihrer stratigraphischen Verknüpfung. Schriftenr Deutsch Ges Geowiss H 61:715–730Google Scholar
  14. Geißler M (2001) Korrelation und Faziesanalyse der oberkarbonen Sedimente und Vulkanite im nordlichen Bereich des Halle Vulkanit-Komplexes unter besonderer Berücksichtigung der Bohrung Wis BAW 1044/81. Unpublished diploma thesis, TU Bergakademie FreibergGoogle Scholar
  15. Grocott J, Arévalo C, Welkner D, Cruden A (2009) Fault-assisted vertical pluton growth: coastal Cordillera, north Chilean Andes. J Geol Soc Lond 166:295–301CrossRefGoogle Scholar
  16. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous-Permian volcanic evolution in Central Europe—U/Pb-ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99CrossRefGoogle Scholar
  17. Hogan JP, Gilbert MC (1995) The A-type Mount Scott Granite Sheet: importance of crustal magma traps. J Geophys Res 100:15779–15793CrossRefGoogle Scholar
  18. Horsman E, Tikoff B, Morgan S (2005) Emplacement-related fabric and multiple sheets in the Maiden Creek Sill, Henry Mountains, Utah, USA. J Struct Geol 27:1426–1444CrossRefGoogle Scholar
  19. Horsman E, Morgan S, de Saint Blanquat M, Habert G, Nugent A, Hunter RA, Tikoff B (2009) Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans Royal Soc Edinb 100:117–132CrossRefGoogle Scholar
  20. Hoth K, Rusbült J, Zagora K, Beer H, Hartmann O (1993) Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke - Dokumentation für den Zeitabschnitt 1962-1990. Schriftenr Geowiss 2:7–145Google Scholar
  21. Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and new mechanism of basic sill emplacement—Theron Mountains, Antarctica. Geol Soc Lond Petrol Geosci 15:269–278CrossRefGoogle Scholar
  22. Jacobs J, Breitkreuz C (2003) Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German Basin. Int J Earth Sci 92:165–172CrossRefGoogle Scholar
  23. Jerram DA, Cheadle MJ, Hunter RH, Elliott MT (1996) The spatial distribution of grains and crystals in rocks. Contrib Mineral Petrol 125:60–74CrossRefGoogle Scholar
  24. Kampe A, Luge J, Schwab M (1965) Die Lagerungsverhältnisse in der nördlichen Umrandung des Löbejüner Porphyrs bei Halle (Saale). Geologie 14:26–46Google Scholar
  25. Knoth W, Kriebel U, Radzinski K-H, Thomae M (1998) Die geologischen Verhältnisse von Halle und Umgebung. Hall Jb Geowiss Beiheft 4:7–34Google Scholar
  26. Koch RA (1981) Die Großxenolithe im großkristallinen Quarzporphyr des Galgenberges von Halle (Saale). Hall Jb Geowiss 6:105–106Google Scholar
  27. Krauß G (2003) Der Schwerzer Rhyolith-Komplex: Ein Beitrag zur Verbreitung und Struktur einer der ältesten Einheiten des Halleschen Vulkanitkomplexes. Hercynia 36:129–150Google Scholar
  28. Lange D (2000) Geophysikalisch-geologische Untersuchung und dreidimensionale Modellierung des Halleschen Porphyrkomplexes. Unpublished diploma thesis, Free University BerlinGoogle Scholar
  29. Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. Geol Soc London Spec Publ 234:75–124CrossRefGoogle Scholar
  30. Mallet J-L (2002) Geomodeling. Applied geostatistic series. Oxford University Press, New York, 599SGoogle Scholar
  31. Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552CrossRefGoogle Scholar
  32. Mock A, Breitkreuz C (2006) Parameters controlling emplacement of shallow-level silicic intrusions—an exploratory study in a Late Paleozoic laccolith complex. Visual Geosci 11:47–48Google Scholar
  33. Mock A, Jerram DA (2005) Crystal size distributions (CSD) in three dimensions: Insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541CrossRefGoogle Scholar
  34. Mock A, Lange D, Exner M, Breitkreuz C, Schwab M, Ehling B-C (1999) Räumliche Erfassung des Fließgefüges der kleinporphyrischen Lakkolithe im Halle-Vulkanit-Komplex. Geol Mitt Sachsen-Anhalt 5:169–175Google Scholar
  35. Mock A, Jerram DA, Breitkreuz C (2003) Using quantitative textural analysis to reveal emplacement mechanisms of shallow level rhyolitic laccoliths. J Petrol 44:833–849CrossRefGoogle Scholar
  36. Mock A, Ehling B-C, Breitkreuz C (2005) Anatomy of a laccolith complex—Geometry and texture of porphyritic rhyolites in the Permocarboniferous Halle Volcanic Complex (Germany). Neues Jb Geol Paläontol Abh 237:211–271Google Scholar
  37. Morgan SS, Stanik A, Horsman E, Tikoff B, de Saint-Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wallrock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30:491–512CrossRefGoogle Scholar
  38. Obst K, Katzung G, Hammer J (1999) Dating of the Late Autunian basic magmatism in the Thuringian Forest. Neues Jb Geol Palaeont Monat 1999:1–10Google Scholar
  39. Paulick H, Breitkreuz C (2005) The Late Paleozoic felsic lava-dominated large igneous province in North East Germany: volcanic facies analysis based on drill cores. Int J Earth Sci 94:834–850CrossRefGoogle Scholar
  40. Romer R, Förster H-J, Breitkreuz C (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contrib Mineral Petrol 141:201–221CrossRefGoogle Scholar
  41. Schmiedel T, Breitkreuz C, Görz I, Ehling B-C (online) Geometry of laccolith margins: 2d and 3d models of the Late Paleozoic Halle Volcanic Complex (Germany). Int J Earth SciGoogle Scholar
  42. Schulz N (2010) Dreidimensionale geologische Modellierung eines spätpaläozoischen intermediären subvulkanischen Komplexes nördlich von Halle (Saale). Unpublished diploma thesis, TU Bergakademie Freiberg, GermanyGoogle Scholar
  43. Schwab M (1959) Zur Deutung des Quarzporphyrs vom Kahlbusch bei Dohna (Sachsen) als Quellkuppe. Geol Rundsch 48:43–54CrossRefGoogle Scholar
  44. Siegert C (1967a) Zur Petrochemie der Vulkanite des Halleschen Permokarbonkomplexes. Geologie 16:1122–1135Google Scholar
  45. Siegert C (1967b) Die zeitliche und räumliche Entwicklung des intermediären Vulkanismus im Halleschen Permokarbonkomplex. Geologie 16:889–900Google Scholar
  46. Stark M (1912) Beiträge zum geologisch-petrogra-phischen Aufbau der Euganeen und zur Lakkolithenfrage. Mineralog Petrogr Mitteil 31:1–80Google Scholar
  47. Von Seckendorff V (2012) Der Magmatismus in und zwischen den spätvariszischen permokarbonen Sedimentbecken in Deutschland. Schriftr Deutsch Gesellschaft Geowiss 61:743–860Google Scholar
  48. Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Palaeozoic coherent to pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). Geol Soc Lond Spec Publ 302:197–219CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christoph Breitkreuz
    • 1
  • Bodo-Carlo Ehling
    • 2
  • Nicole Pastrik
    • 3
  1. 1.TU Bergakademie FreibergFreibergGermany
  2. 2.State Survey for Geology and Mining of Sachsen-AnhaltHalleGermany
  3. 3.Geoforschungszentrum PotsdamPotsdamGermany

Personalised recommendations