The Volcanic-Plutonic Connection

  • Allen F. Glazner
  • Drew S. Coleman
  • Ryan D. Mills
Chapter
Part of the Advances in Volcanology book series (VOLCAN)

Abstract

One way to frame the debate about the relationships between volcanic and plutonic rocks is this: are plutons samples of magma that passed through the crust, or residues left behind by extraction of erupted liquids? In the former case plutons are compositionally equivalent to cogenetic volcanic rocks, barring biases introduced by passing through the crustal filter; in the latter they are cumulates, having lost liquid to eruption. These hypotheses make specific predictions about trace-element variations, which we test using global geochemical databases for circum-Pacific convergent margins and western North America. Volcanic rocks are far more abundant in these datasets than plutonic rocks and are biased to more mafic compositions. After subsampling the volcanic dataset to match the plutonic dataset, we find little evidence for significant loss of liquid from plutons. Rather, plutonic and volcanic trace-element patterns are generally indistinguishable. Where distinctions do occur, they are backwards; for example, a higher proportion of plutonic rocks has low Eu, Zr, and Ba, features of fractionated liquids, than volcanic rocks. These observations support the hypothesis that liquids fractionated from crystal-rich magmas are of small volume and are relatively immobile (e.g., aplites). These conclusions, derived from bulk-rock geochemistry, are supported by U-Pb zircon geochronology and field and textural observation. These data support the view that plutonic rocks are texturally modified samples of the same magmas that erupt. Partial melting provides an alternative to crystal fractionation for the origin of high-silica volcanic rocks.

Keywords

Pluton Geochemistry Geochronology Geochemical database 

Notes

Acknowledgments

This work is the product of discussions and debates with colleagues and students too numerous to summarize here. Several, however, warrant special mention. Most importantly, John Bartley has been instrumental in the development of non-axiomatic thinking regarding plutons and pluton-volcano connections. Vigorous discussions with Peter Lipman, Bill McIntosh, Matt Zimmerer, Lang Farmer, and Calvin Miller have significantly influenced our ideas over the past decade. Reviews by Sergio Rocchi and Eric Christiansen helped us to clarify many of the points in the paper and to avoid too many mistakes. This work has been supported by grants to our students from the University of North Carolina Department of Geological Sciences’ Martin Fund, Sigma Xi, the Geological Society of America, and the University of California’s White Mountain Research Station. Funding from the National Science Foundation includes awards EAR-0336070, 0538129, 1050215, 1052813, and 1232608. We gratefully acknowledge generous cooperation and logistical support from the U.S. National Park Service and U.S. Geological Survey, in particular Jan van Wagtendonk, Peggy Moore, and Greg Stock. We also thank the staff of the White Mountain Research Center for their generous assistance during field work.

References

  1. Alidibirov M, Dingwell DB (1996) Magma fragmentation by rapid decompression. Nature 380(6570):146–148. doi: 10.1038/380146a0CrossRefGoogle Scholar
  2. Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284:409–416. doi: 10.1016/j.epsl.2009.05.006CrossRefGoogle Scholar
  3. Bachl CA, Miller CF, Miller JS, Faulds JE (2001) Construction of a pluton; evidence from an exposed cross section of the searchlight pluton, Eldorado Mountains, Nevada. Geol Soc Am Bull 113:1213–1228CrossRefGoogle Scholar
  4. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582CrossRefGoogle Scholar
  5. Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285CrossRefGoogle Scholar
  6. Bachmann O, Dungan MA, Bussy F (2005) Insights into shallow magmatic processes in large silicic magma bodies; the trace element record in the Fish Canyon magma body, Colorado. Contrib Miner Petrol 149:338–349CrossRefGoogle Scholar
  7. Bachmann O, Dungan MA, Lipman PW (2000) Voluminous lava-like precursor to a major ash-flow tuff; low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado. J Volcanol Geoth Res 98:153–171CrossRefGoogle Scholar
  8. Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado; rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503CrossRefGoogle Scholar
  9. Bachmann O, Miller CF, de Silva SL (2007a) The volcanic-plutonic connection as a stage for understanding crustal magmatism. J Volcanol Geoth Res 167:1–23. doi: 10.1016/j.jvolgeores.2007.08.002CrossRefGoogle Scholar
  10. Bachmann O, Oberli F, Dungan MA, Meier M, Mundil R, Fischer H (2007b) 40Ar/39Ar and U/Pb dating of the Fish Canyon magmatic system, San Juan volcanic field, Colorado; evidence for an extended crystallization history. Chemical Geology 236:134–166. doi: 10.1016/j.chemgeo.2006.09.005CrossRefGoogle Scholar
  11. Bailey RA, Dalrymple GB, Lanphere MA (1976) Volcanism, structure, and geochronology of Long Valley caldera, Mono County, California. J Geophys Res 81:725–744CrossRefGoogle Scholar
  12. Barker SJ, Wilson CJN, Smith EGC, Charlier BLA, Wooden JL, Hiess J, Ireland TR (2014) Post-supereruption magmatic reconstruction of Taupo Volcano (New Zealand), as reflected in zircon ages and trace elements. J Petrol 55:1511–1533CrossRefGoogle Scholar
  13. Barth AP, Feilen ADG, Yager SL, Douglas Wooden JL, Riggs NR, Walker JD (2012) Petrogenetic connections between ash-flow tuffs and a granodioritic to granitic intrusive suite in the Sierra Nevada arc, California. Geosphere 8:250–264. doi: 10.1130/GES00737.1CrossRefGoogle Scholar
  14. Bartley JM, Coleman DS, Glazner AF (2008) Incremental pluton emplacement by magmatic crack-seal. Trans R Soc Edinb: Earth Sci 97:383–396CrossRefGoogle Scholar
  15. Bateman PC (1992) Plutonism in the central part of the Sierra Nevada batholith. US Geological Survey Professional Paper, California 1483Google Scholar
  16. Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne intrusive series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482CrossRefGoogle Scholar
  17. Best MG, Christiansen EH, Blank HR Jr (1989) Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah. Geol Soc Am Bull 101:1076–1090CrossRefGoogle Scholar
  18. Boudreau A (2011) The evolution of texture and layering in layered intrusions. Int Geol Rev 53:330–353. doi: 10.1080/00206814.2010.496163CrossRefGoogle Scholar
  19. Bowen NL (1915) The crystallization of haplobasaltic, haplodioritic, and related magmas. Am J Sci 40:161–185CrossRefGoogle Scholar
  20. Branch CD (1967) Genesis of magma for acid calc-alkaline volcano-plutonic formations. Tectonophysics 4:83–100CrossRefGoogle Scholar
  21. Buddington AF (1959) Granite emplacement with special reference to North America. Geol Soc Am Bull 70:671–747CrossRefGoogle Scholar
  22. Buma G, Frey FA, Wones DR (1971) New England granites; trace element evidence regarding their origin and differentiation. Contrib Miner Petrol 31:300–320CrossRefGoogle Scholar
  23. Caricchi L, Annen C, Blundy J, Simpson G, Pinel V (2014a) Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat Geosci 7:126–130. doi: 10.1038/NGEO2041CrossRefGoogle Scholar
  24. Caricchi L, Simpson G, Schaltegger U (2014b) Zircons reveal magma fluxes in the Earth’s crust. Nature 511(7510):457–461. doi: 10.1038/nature13532CrossRefGoogle Scholar
  25. Chambefort I, Dilles JH, Kent AJR (2008) Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology 36:719–722. doi: 10.1130/G24920A.1CrossRefGoogle Scholar
  26. Chapin CE, Lowell GR (1979) Primary and secondary flow structures in ash-flow tuffs of the Gribbles Run paleovalley, central Colorado. Spec Pap Geol Soc Am 180:137–154. doi: 10.1130/SPE180-p137CrossRefGoogle Scholar
  27. Coleman DS, Bartley JM, Glazner AF, Pardue MJ (2012) Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation? Geosphere 8:1568–1587. doi: 10.1130/GES00798.1CrossRefGoogle Scholar
  28. Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436CrossRefGoogle Scholar
  29. Colombini LL, Miller CF, Gualda GAR, Wooden JL, Miller JS (2011) Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral Petrol 102:29–50. doi: 10.1007/s00710-011-0177-3CrossRefGoogle Scholar
  30. Crowley JL, Schoene B, Bowring SA (2007) U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35:1123–1126. doi: 10.1130/G24017A.1CrossRefGoogle Scholar
  31. Daly RA (1914) Igneous rocks and their origin. McGraw-Hill, New YorkGoogle Scholar
  32. Daly RA (1917) The geology of Pigeon Point, Minnesota. Am J Sci 43:423–448CrossRefGoogle Scholar
  33. Daly RA (1928) Bushveld Igneous Complex of the Transvaal. Geol Soc Am Bull 39:703–768. doi: 10.1130/GSAB-39-703CrossRefGoogle Scholar
  34. Daly RA (1933) Igneous Rocks and the Depths of the Earth. McGraw-Hill, New YorkGoogle Scholar
  35. Darwin C (1844) Geological observations on the volcanic islands, visited during the voyage of H.M.S. Beagle: together with some brief notices on the geology of Australia and the Cape of Good Hope. Smith, Elder, LondonGoogle Scholar
  36. Davis JW, Coleman DS, Gracely JT, Gaschnig R, Stearns M (2012) Magma accumulation rates and thermal histories of plutons of the Sierra Nevada Batholith, CA. Contrib Miner Petrol 163:449–465. doi: 10.1007/s00410-011-0683-7CrossRefGoogle Scholar
  37. de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geoth Res 167:320–335CrossRefGoogle Scholar
  38. de Silva SL, Self S, Francis PW, Drake RE, Ramirez RC (1994) Effusive silicic volcanism in the Central Andes; the Chao Dacite and other young lavas of the Altiplano-Puna volcanic complex. J Geophys Res, B, Solid Earth Planets 99:17805–817825Google Scholar
  39. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  40. du Bray EA, Bacon CR, John DA, Wooden JL, Mazdab FK (2011) Episodic intrusion, internal differentiation, and hydrothermal alteration of the Miocene Tatoosh intrusive suite south of Mount Rainier, Washington. Geol Soc Am Bull 123:534–561. doi: 10.1130/b30095.1CrossRefGoogle Scholar
  41. Edwards BR, Karson J, Wysocki R, Lev E, Bindeman I, Kueppers U (2013) Insights on lava-ice/snow interactions from large-scale basaltic melt experiments. Geology 41:851–854. doi: 10.1130/G34305.1CrossRefGoogle Scholar
  42. Eichelberger JC, Izbekov PE, Browne BL (2006) Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos 87:135–154. doi: 10.1016/j.lithos.2005.05.006CrossRefGoogle Scholar
  43. Eilers PH, Goeman JJ (2004) Enhancing scatterplots with smoothed densities. Bioinformatics 20:623–628. doi: 10.1093/bioinformatics/btg454CrossRefGoogle Scholar
  44. Evans OC, Hanson GN (1993) Accessory-mineral fractionation of rare-earth element (REE) abundances in granitoid rocks. Chemical Geology 110:69–93. doi: 10.1016/0009-2541(93)90248-HCrossRefGoogle Scholar
  45. Evernden JF, Kistler RW (1970) Chronology of emplacement of Mesozoic batholithic complexes in California and western Nevada. United States Geological Survey Professional Paper 623Google Scholar
  46. Ewart A (1979) A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. In: Barker F (ed) Trondhjemites, Dacites and Related Rocks, pp 13–121Google Scholar
  47. Farrell J, Smith RB, Husen S, Diehl T (2014) Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys Res Lett 41:3068–3073. doi: 10.1002/2014GL059588CrossRefGoogle Scholar
  48. Faulds JE, Feuerbach DL, Reagan MK, Metcalf RV, Gans P, Walker JD (1995) The Mount Perkins block, northwestern Arizona: an exposed cross section of an evolving preextensional to synextensional magmatic system. J Geophys Res 100:15249–15266CrossRefGoogle Scholar
  49. Frazer RE, Coleman DS, Mills RD (2014) Zircon U-Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J Geophys Res: Solid Earth 119:2907–2924. doi: 10.1002/2013JB010716CrossRefGoogle Scholar
  50. Frazer RE, Mills RD, Coleman DS (2013) Can a supervolcano eruption eradicate existing zircon? Abstr with Programs Geol Soc Am 45:693Google Scholar
  51. Frey HM, Lange RA, Hall CM, Nelson SA, Delgado-Granados H, Mastin L, Wineberg D (2014) 40Ar/39Ar geochronology of Volcan Tepetiltic, western Mexico: implications for the origin of zoned rhyodacite-rhyolite liquid erupted explosively from an andesite stratovolcano after a prolonged hiatus. Bull Geol Soc Am 126:16–30. doi: 10.1130/B30790.1CrossRefGoogle Scholar
  52. Gelman SE, Deering CD, Bachmann O, Huber C, Gutiérrez FJ (2014) Identifying the crystal graveyards remaining after large silicic eruptions. Earth Planet Sci Lett 403:299–306. doi: 10.1016/j.epsl.2014.07.005CrossRefGoogle Scholar
  53. Gelman SE, Gutierrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762. doi: 10.1130/g34241.1CrossRefGoogle Scholar
  54. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4/5):4–11CrossRefGoogle Scholar
  55. Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:183. doi: 10.1130/g24496a.1CrossRefGoogle Scholar
  56. Gualda GAR, Ghiorso MS (2013) Low-pressure origin of high-silica rhyolites and granites. J Geol 121:537–545. doi: 10.1086/671395CrossRefGoogle Scholar
  57. Hall J (1805) Experiments on whinstone and lava. Trans R Soc Edinb 5:43–75CrossRefGoogle Scholar
  58. Hamilton W, Myers WB (1967) The nature of batholiths. U S Geological Survey Professional Paper 554-CGoogle Scholar
  59. Hamilton WB (1959) Yellowstone Park area, Wyoming; a possible modern lopolith. Geol Soc Am Bull 70:225–228. doi: 10.1130/0016-7606(1959)70[225:YPAWAP]2.0.CO;2CrossRefGoogle Scholar
  60. Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43CrossRefGoogle Scholar
  61. Harris PG, Kennedy WQ, Scarfe CM (1970) Volcanism versus plutonism—the effect of chemical composition. In: Newall G, Rast N (eds) Mechanism of igneous intrusion, geological journal, special issue 2. Liverpool Geological Society, Liverpool, pp 187–200Google Scholar
  62. Higgins MD (1999) Origin of megacrysts in granitoids by textural coarsening; a crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In: Castro A, Fernandez C, Vigneresse JL (eds) Understanding granites; integrating new and classical techniques, Geological Society special publications 168. Geological Society of London, London, pp 207–219Google Scholar
  63. Hildreth W (1979) The Bishop Tuff; evidence for the origin of compositional zonation in silicic magma chambers. In: Chapin CE, Elston WE (eds) Ash-Flow Tuffs, special paper—Geological Society of America, vol 180, pp 3–75Google Scholar
  64. Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192CrossRefGoogle Scholar
  65. Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geoth Res 136:169–198CrossRefGoogle Scholar
  66. Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan; part I, phase relations, phase composition and pre-eruptive conditions. J Petrol 46:319–337CrossRefGoogle Scholar
  67. Huang F, Lundstrom CC, Glessner J, Ianno A, Boudreau A, Li J, Ferre EC, Marshak S, DeFrates J (2009) Chemical and isotopic fractionation of wet andesite in a temperature gradient; experiments and models suggesting a new mechanism of magma differentiation. Geochim Cosmochim Acta 73:729–749CrossRefGoogle Scholar
  68. Johnson BR, Glazner AF (2010) Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contrib Miner Petrol 159:599–619. doi: 10.1007/s00410-009-0444-zCrossRefGoogle Scholar
  69. Johnson MC, Rutherford MJ (1989) Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J Petrol 30:711–737CrossRefGoogle Scholar
  70. Kay SM, Coira B, Mpodozis C (2008) Field trip guide; Neogene evolution of the central Andean Puna Plateau and southern Central Volcanic Zone. In: Kay SM, Ramos VA (eds) Field trip guides to the backbone of the Americas in the Southern and Central Andes: Ridge Collision, Shallow Subduction, and Plateau Uplift: Geological Society of America, vol 13. Boulder, CO, pp 117–181Google Scholar
  71. Kennedy WQ, Anderson EM (1938) Crustal layers and the origin of magmas. Bull Volc 3:23–82CrossRefGoogle Scholar
  72. Klemetti EW, Grunder AL (2008) Volcanic evolution of Volcan Aucanquilcha: a long-lived dacite volcano in the central Andes of northern Chile. Bull Volc 70:633–650CrossRefGoogle Scholar
  73. Kouchi A, Sunagawa I (1983) Mixing of basaltic and dacitic magmas by forced convection. Nature 304:527–528CrossRefGoogle Scholar
  74. Lackey JS, Cecil MR, Windham CJ, Frazer RE, Bindeman IN, Gehrels GE (2012) The fine gold intrusive suite; the roles of basement terranes and magma source development in the early Cretaceous Sierra Nevada Batholith. Geosphere 8:292–313. doi: 10.1130/GES00745.1CrossRefGoogle Scholar
  75. Larsen ES Jr (1948) Batholith and associated rocks of Corona, Elsinore, and San Luis Rey quadrangles. Memoir—Geological Society of America, Southern California 29Google Scholar
  76. Lee C-TA, Morton DM (2015) High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth Planet Sci Lett 409:23–31. doi: 10.1016/j.epsl.2014.10.040CrossRefGoogle Scholar
  77. Lipman PW (1984) The roots of ash flow calderas in western North America; windows into the tops of granitic batholiths. J Geophys Res 89:8801–8841. doi: 10.1029/JB089iB10p08801CrossRefGoogle Scholar
  78. Lipman PW (2000) Central San Juan caldera cluster; regional volcanic framework. Spec Pap Geol Soc Am 346:9–69Google Scholar
  79. Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70CrossRefGoogle Scholar
  80. Lofgren G (1980) Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves RB (ed) Physics of magmatic processes. University Press of Princeton, New Jersey, pp 487–551Google Scholar
  81. Lundstrom CC (2009) Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining. Geochim Cosmochim Acta 73:5709–5729. doi: 10.1016/j.gca.2009.06.020CrossRefGoogle Scholar
  82. Lundstrom CC, Chakraborty P, Zambardi T (2013) Isotopic insights into the plutonic-volcanic relationship with proposal of a new eruption mechanism. Abst with Programs Geol Soc Am 45:692Google Scholar
  83. Lyell CS (1838) Elements of geology. John Murray, LondonGoogle Scholar
  84. Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30CrossRefGoogle Scholar
  85. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization; 1, theory. Contrib Miner Petrol 99:277–291CrossRefGoogle Scholar
  86. Matzel JEP, Bowring SA, Miller RB (2006) Time scales of pluton construction at differing crustal levels; examples from the Mount Stuart and Tenpeak Intrusions, north Cascades, Washington. Geol Soc Am Bull 118:1412–1430CrossRefGoogle Scholar
  87. McDonough WF, Sun SS (1995) The composition of the Earth. Chemical Geology 120:223–253CrossRefGoogle Scholar
  88. McIntosh WC, Chapin CE (2004) Geochronology of the central Colorado volcanic field. New Mex Bur Geol Mineral Resour Bull 160:205–238Google Scholar
  89. Mills RD, Coleman DS (2013) Temporal and chemical connections between plutons and ignimbrites from the Mount Princeton magmatic center. Contrib Miner Petrol 165:961–980. doi: 10.1007/s00410-012-0843-4CrossRefGoogle Scholar
  90. Nakada S (1991) Magmatic processes in titanite-bearing dacites, central Andes of Chile and Bolivia. Am Mineral 76:548–560Google Scholar
  91. Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322. doi: 10.1016/0016-7037(85)90231-5CrossRefGoogle Scholar
  92. OED Online (2015) “canon, n. 1, 2”. Oxford University Press http://www.oed.com/view/Entry/27148?rskey=mKfKTq&result=3&isAdvanced=false
  93. Ortega-Rivera A, Farrar E, Hanes JA, Archibald DA, Gastil RG, Kimbrough DL, Zentilli M, Lopez Martinez M, Feraud G, Ruffet G (1997) Chronological constraints on the thermal and tilting history of the Sierra San Pedro Martir Pluton, Baja California, Mexico, from U/Pb, 40Ar/39Ar, and fission-track geochronology. Geol Soc Am Bull 109:728–745. doi: 10.1130/0016-7606(1997)109<0728:CCOTTA>2.3.CO;2CrossRefGoogle Scholar
  94. Parker DF, Hodges FN, Perry A, Mitchener ME, Barnes MA, Ren M (2010) Geochemistry and petrology of late Eocene Cascade Head and Yachats Basalt and alkalic intrusions of the central Oregon Coast Range, U.S.A. J Volcanol Geoth Res 198:311–324. doi: 10.1016/j.jvolgeores.2010.09.016CrossRefGoogle Scholar
  95. Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380CrossRefGoogle Scholar
  96. Perkins P (2006) Plot a smoothed histogram of bivariate data. In: Matlab File Exchange http://www.mathworks.com/matlabcentral/fileexchange/13352-smoothhist2d
  97. Peterson DW, Roberts RJ (1963) Relation between the crystal content and the chemical composition of welded tuffs. Bull Volc 26:113–123CrossRefGoogle Scholar
  98. Pirsson LV (1909) Rocks and rock minerals. Wiley, New YorkGoogle Scholar
  99. Pitcher WS, Berger AR (1972) The geology of Donegal: a study of granite emplacement and unroofing. Wiley, New YorkGoogle Scholar
  100. Piwinskii AJ (1968) Experimental studies of igneous rock series, central Sierra Nevada batholith, California. J Geol 76:548–570CrossRefGoogle Scholar
  101. Read HH (1948) Granites and granites. Geol Soc Am Mem 28:1–19Google Scholar
  102. Renne PR, Tobisch OT, Saleeby JB (1993) Thermochronologic record of pluton emplacement, deformation, and exhumation at courtright shear zone, central Sierra Nevada, California. Geology 21:331–334CrossRefGoogle Scholar
  103. Rioux M, Farmer GL, Bowring SA, Wooton KM, Amato JM, Coleman DS, Verplanck P (in review) The link between volcanism and plutonism in epizonal magma systems: High-precision U-Pb geochronology from the Organ Mountains caldera and batholith, New Mexico. Contributions to Mineralogy and PetrologyGoogle Scholar
  104. Ross DC (1969) Descriptive petrography of three large granitic bodies in the Inyo Mountains. U S Geological Survey Professional Paper, California 601Google Scholar
  105. Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980, eruption of Mount St. Helens 1. melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947CrossRefGoogle Scholar
  106. Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. phase equilibria and pre-eruption P-T–fO2–fH2O conditions of the dacite magma. J Petrol 40:381–411CrossRefGoogle Scholar
  107. Schmitz MD, Bowring SA (2001) U-Pb zircon and titanite systematics of the Fish Canyon Tuff; an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks. Geochim Cosmochim Acta 65:2571–2587CrossRefGoogle Scholar
  108. Schöpa A, Annen C (2013) The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J Geophys Res: Solid Earth 118:926–942. doi: 10.1002/jgrb.50127CrossRefGoogle Scholar
  109. Simon JI, Reid MR (2005) The pace of rhyolite differentiation and storage in an “archetypical” silicic magma system, Long Valley, California. Earth Planet Sci Lett 235:123–140CrossRefGoogle Scholar
  110. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148:635–661CrossRefGoogle Scholar
  111. Smith RL (1960) Ash flows. Geol Soc Am Bull 71:795–841CrossRefGoogle Scholar
  112. Smith RL, Shaw HR (1979) Igneous-related geothermal systems. Geological Survey Circular, U.S. 790Google Scholar
  113. Sonehara T, Harayama S (2007) Petrology of the Nohi Rhyolite and its related granitoids: a Late Cretaceous large silicic igneous field in central Japan. J Volcanol Geoth Res 167:57–80CrossRefGoogle Scholar
  114. Streck MJ (2014) Evaluation of crystal mush extraction models to explain crystal-poor rhyolites. J Volcanol Geoth Res 284:79–94. doi: 10.1016/j.jvolgeores.2014.07.005CrossRefGoogle Scholar
  115. Streck MJ, Grunder AL (1997) Compositional Gradients and gaps in high-silica rhyolites of the Rattlesnake Tuff, Oregon. J Petrol 38:133CrossRefGoogle Scholar
  116. Tappa MJ, Coleman DS, Mills RD, Samperton KM (2011) The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem Geophys Geosyst 12:Q10011. doi: 10.1029/2011gc003700CrossRefGoogle Scholar
  117. Tarbuck EJ, Lutgens FK (2008) Earth: an introduction to physical geology. Pearson Prentice Hall, New JerseyGoogle Scholar
  118. Taylor SR, Ewart A, Capp AC (1968) Leucogranites and rhyolites; trace element evidence for fractional crystallisation and partial melting. Lithos 1:179–186CrossRefGoogle Scholar
  119. Thompson RA, Dungan MA, Lipman PW, Hildreth W, Grove TL (1986) Multiple differentiation processes in early-rift calc-alkaline volcanics, northern Rio Grande Rift, New Mexico. J Geophys Res 91:6046–6058. doi: 10.1029/JB091iB06p06046CrossRefGoogle Scholar
  120. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoir 74Google Scholar
  121. Wark DA (1991) Oligocene ash flow volcanism, northern Sierra Madre Occidental; role of mafic and intermediate-composition magmas in rhyolite genesis. J Geophys Res 96(13–13):411. doi: 10.1029/90JB02666CrossRefGoogle Scholar
  122. Warren RG, Byers FM Jr, Broxton DE, Freeman SH, Hagan RC (1989) Phenocryst abundances and glass and phenocryst compositions as indicators of magmatic environments of large-volume ash flow sheets in southwestern Nevada. J Geophys Res 94:5987–6020. doi: 10.1029/JB094iB05p05987CrossRefGoogle Scholar
  123. White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7(3). doi: 10.1029/2005gc001002CrossRefGoogle Scholar
  124. Whitney JA (1988) The origin of granite: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100:1886–1897CrossRefGoogle Scholar
  125. Wooton KM (2014) Organ Needle Pluton, New Mexico: incrementally emplaced from deep crustal sources. OCLC Number: 889066567 In: UNC electronic theses and dissertations collection. University of North Carolina at Chapel Hill, CarolinaGoogle Scholar
  126. Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Guenther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41:867–870. doi: 10.1130/G34366.1CrossRefGoogle Scholar
  127. Yoder HS Jr (1976) Generation of Basaltic Magma. National Academy of Sciences, Washington, D. CGoogle Scholar
  128. Zambardi T, Lundstrom CC, Li X, McCurry M (2014) Fe and Si isotope variations at Cedar Butte Volcano; insight into magmatic differentiation. Earth Planet Sci Lett 405:169–179. doi: 10.1016/j.epsl.2014.08.020CrossRefGoogle Scholar
  129. Zimmerer MJ, McIntosh WC (2012) The geochronology of volcanic and plutonic rocks at the Questa caldera: constraints on the origin of caldera-related silicic magmas. Geol Soc Am Bull 124:1394–1408. doi: 10.1130/B30544.1CrossRefGoogle Scholar
  130. Zimmerer MJ, McIntosh WC (2013) Geochronologic evidence of upper-crustal in situ differentiation: Silicic magmatism at the Organ caldera complex, New Mexico. Geosphere 9:155–169CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Allen F. Glazner
    • 1
  • Drew S. Coleman
    • 1
  • Ryan D. Mills
    • 1
  1. 1.Department of Geological SciencesUniversity of North CarolinaChapel HillUSA

Personalised recommendations