Advertisement

Hybridizing Infeasibility Driven and Constrained-Domination Principle with MOEA/D for Constrained Multiobjective Evolutionary Optimization

  • Huibiao Lin
  • Zhun Fan
  • Xinye Cai
  • Wenji Li
  • Sheng Wang
  • Jian Li
  • Chengdian Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8916)

Abstract

This paper presents a novel multiobjective constraint handling approach, named as MOEA/D-CDP-ID, to tackle constrained optimization problems. In the proposed method, two mechanisms, namely infeasibility driven (ID) and constrained-domination principle (CDP) are embedded into a prominent multiobjective evolutionary algorithm called MOEA/D. Constrained-domination principle defined a domination relation of two solutions in constraint handling problem. Infeasibility driven preserves a proportion of marginally infeasible solutions to join the searching process to evolve offspring. Such a strategy allows the algorithm to approach the constraint boundary from both the feasible and infeasible side of the search space, thus resulting in gaining a Pareto solution set with better distribution and convergence. The efficiency and effectiveness of the proposed approach are tested on several well-known benchmark test functions. In addition, the proposed MOEA/D-CDP-ID is applied to a real world application, namely design optimization of the two-stage planetary gear transmission system. Experimental results suggest that MOEA/D-CDP-ID can outperform other state-of-the-art algorithms for constrained multiobjective evolutionary optimization.

Keywords

Multiobjective evolutionary algorithm Infeasibility driven Constrained -domination principle Constrained multiobjective optimization Penalty functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)CrossRefGoogle Scholar
  2. 2.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evolutionary Computation 4(3), 284–294 (2000)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Coello Coello, C.A.: Constraint-handling using an evolutionary multiobjective optimization technique. Civil Engineering and Environmental Systems 17(4), 319–346 (2000)CrossRefGoogle Scholar
  5. 5.
    Hamida, S.B., Schoenauer, M.: An adaptive algorithm for constrained optimization problems. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 529–538. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Cai, Z., Wang, Y.: A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization. IEEE Transactions on Evolutionary Computation 10(6), 658–675 (2006)CrossRefGoogle Scholar
  7. 7.
    Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary algorithm for constrained optimization. In: Mezura-Montes, E. (ed.) Constraint-Handling in Evolutionary Optimization. SCI, vol. 198, pp. 145–165. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Hu, Q., Min, R.: Mult-i objective optimal design study of the two-stage planetary gear transmission system s based on the MATLAB. Modern Manufacturing Engineering (3), 98–101 (2008)Google Scholar
  9. 9.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analisis and Review. Computer Engineering and Networks Laboratory, ETH Zurich, Tech. Rep. 139 (June 2002)Google Scholar
  10. 10.
    Liu, C.-A.: New Multi-Objective Constrained Optimization Evolutionary Algorithm. In: Proc. 3rd Int. Conf. Innovative Computing Information and Control ICICIC 2008 (2008)Google Scholar
  11. 11.
    Liu, M., Zou, X., Chen, Y., Wu, Z.: Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances. In: Proc. IEEE Congress Evolutionary Computation CEC 2009, pp. 2913–2918 (2009)Google Scholar
  12. 12.
    del Castillo, J.M.: The Analytical Expression of the Efficiency of Planetary Gear Trains. Mechanism and Machine Theory (37), 197–214 (2002)Google Scholar
  13. 13.
    Coello Coello, C.A., Cruz Cort´es, N.: Solving Multiobjective Optimization Problems using an Artificial Immune System. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)CrossRefGoogle Scholar
  14. 14.
    Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evolutionary Computation 16(4), 504–522 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Cai, Z.: Combining multiobjective optimization withdifferential evolution to solve constrained optimization problems. IEEE Trans. Evolutionary Computation 16(1), 117–134 (2012a)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Cai, Z.: A dynamic hybrid framework for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(1), 203–217 (2012b)CrossRefGoogle Scholar
  17. 17.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evolutionary Computation 13(2), 284–302 (2009)CrossRefGoogle Scholar
  18. 18.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Meth. Appl. Mech. Eng. 186, 311–338 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Huibiao Lin
    • 1
    • 4
  • Zhun Fan
    • 1
    • 4
  • Xinye Cai
    • 2
  • Wenji Li
    • 1
    • 4
  • Sheng Wang
    • 1
    • 4
  • Jian Li
    • 3
    • 4
  • Chengdian Zhang
    • 1
    • 4
  1. 1.School of EngineeringShantou UniversityGuangdongP.R. China
  2. 2.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingP.R. China
  3. 3.College of ScienceShantou UniversityGuangdongP.R. China
  4. 4.Guangdong Provincial Key Laboratory of Digital Signal and Image Processing TechniquesShantou UniversityGuangdongP.R. China

Personalised recommendations