Advertisement

Effects of Camera’s Movement Forms on Pollutant’s Automatic Extraction Algorithm

Conference paper
  • 2.8k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8918)

Abstract

The fast and accurate automatic extraction of pollutants on cameras of mobile robots plays a vital role in the follow-up camera’s automatic cleaning. Currently, most of the researches focus on the extraction algorithm for pollutants, and there are almost no relevant studies on the effects of camera’s movement forms on pollutant’s extraction algorithm. Consequently, this paper explores the impact on pollutant’s extraction algorithm when the camera is at the same speed, but in different movement forms, which provides some suggestions for the improvement of the pollutant’s automatic extraction algorithm.

Keywords

mobile robot pollutant’s extraction algorithm camera’s movement form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(3), 367–385 (2003)CrossRefGoogle Scholar
  2. 2.
    Saranli, U., Buehler, M., Koditschek, D.E.: RHex: A Simple and Highly Mobile Hexapod Robot. The International Journal of Robotics Research 20(7), 616–631 (2001)CrossRefGoogle Scholar
  3. 3.
    Wright, C., Buchan, A., Brown, B., et al.: Design and architecture of the unified modular snake robot. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, Minnesota, USA, pp. 4347–4354 (2012)Google Scholar
  4. 4.
    Souto, D., Faina, A., Lopez-Pena, F., et al.: Lappa: A new type of robot for underwater non-magnetic and complex hull cleaning. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 3409–3414 (2013)Google Scholar
  5. 5.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: Interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH 2004 Papers, pp. 309–314. ACM, Los Angeles (2004)CrossRefGoogle Scholar
  6. 6.
    Kumar, M.P., Ton, P.H.S., Zisserman, A.: OBJ CUT. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, San Diego, California, USA, pp. 18–25 (2005)Google Scholar
  7. 7.
    Jiang, Z., Yi, H.: A feature tracking method based on image pyramid optical flow. Geomatics and Information Science of Wuhan University 32(08), 680–683 (2007)Google Scholar
  8. 8.
    Sánchez, A., Ruiz, J.V., Moreno, A.B., et al.: Differential optical flow applied to automatic facial expression recognition. Neurocomputing 74(8), 1272–1282 (2011)CrossRefGoogle Scholar
  9. 9.
    Du, J., Xu, L.: Abnormal behavior detection based on regional optical flow. Journal of Zhejiang University (Engineering Science) 45(07), 1161–1166 (2011)Google Scholar
  10. 10.
    Zhang, Z., Ye, P., Wang, R.: Multi-frame Image Super-resolution Reconstruction Based on SIFT. Journal of Image and Graphics 14(11), 2373–2377 (2009)Google Scholar
  11. 11.
    Min, W., Jiahao, Z., Jinbao, W.: Algorithm for background update in video vehicle detection based on DSP. Electronics Science and Technology 25(05), 129–132 (2012)Google Scholar
  12. 12.
    Peng, Q., Li, H.: Background extraction method based on block histogram analysis for video images. Journal of Southwest Jiaotong University 41(01), 48–53 (2006)Google Scholar
  13. 13.
    Yang, T., Li, J., Pan, Q., et al.: A multiple layer background model for foreground detection. Journal of Image and Graphics 13(07), 1303–1308 (2008)Google Scholar
  14. 14.
    Xu, Y., Zuo, J., Zhang, X., et al.: A video segmentation algorithm based on accumulated frame differences. Opto-Electronic Engineering 31(7), 69–72 (2004)Google Scholar
  15. 15.
    Zhao, S., Zhao, J., Wang, Y., Fu, X.: Moving object detecting using gradient information, three-frame-differencing and connectivity testing. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 510–518. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Xu, K., Qin, K., Huang, B., et al.: A new method of region based image segmentation based on cloud model. Journal of Image and Graphics 15(05), 757–763 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Department of Automation and Systems TechnologyAalto University School of Electrical EngineeringAaltoFinland
  3. 3.Department of Mechatronics Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran

Personalised recommendations