An Open Source Multimodal Image-Guided Prostate Biopsy Framework

  • Amit Shah
  • Oliver Zettinig
  • Tobias Maurer
  • Cristina Precup
  • Christian Schulte zu Berge
  • Jakob Weiss
  • Benjamin Frisch
  • Nassir Navab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8680)

Abstract

Although various modalities are used in prostate cancer imaging, transrectal ultrasound (TRUS) guided biopsy remains the gold standard for diagnosis. However, TRUS suffers from low sensitivity, leading to an elevated rate of false negative results. Magnetic Resonance Imaging (MRI) on the other hand provides currently the most accurate image-based evaluation of the prostate. Thus, TRUS/MRI fusion image-guided biopsy has evolved to be the method of choice to circumvent the limitations of TRUS-only biopsy. Most commercial frameworks that offer such a solution rely on rigid TRUS/MRI fusion and rarely use additional information from other modalities such as Positron Emission Tomography (PET). Other frameworks require long interaction times and are complex to integrate with the clinical workflow. Available solutions are not fully able to meet the clinical requirements of speed and high precision at low cost simultaneously. We introduce an open source fusion biopsy framework that is low cost, simple to use and has minimal overhead in clinical workflow. Hence, it is ideal as a research platform for the implementation and rapid bench to bedside translation of new image registration and visualization approaches. We present the current status of the framework that uses pre-interventional PET and MRI rigidly registered with 3D TRUS for prostate biopsy guidance and discuss results from first clinical cases.

Keywords

Prostate cancer Multimodal image-guided biopsy PET MRI TRUS Open source software 

References

  1. 1.
    Worldwide cancer key facts 2014, cancer research UK. http://publications.cancerresearchuk.org/downloads/Product/CS_KF_WORLDWIDE.pdf
  2. 2.
    Schulte zu Berge, C., Grunau, A., Mahmud, H., Navab, N.: CAMPVis - a game engine-inspired research framework for medical imaging and visualization. Technical report, Technische Universität München (2014). http://campar.in.tum.de/Main/CAMPVis
  3. 3.
    Delongchamps, N.B., Peyromaure, M., Schull, A., Beuvon, F., Bouazza, N., Flam, T., Zerbib, M., Muradyan, N., Legman, P., Cornud, F.: Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J. Urol. 189(2), 493–499 (2013)CrossRefGoogle Scholar
  4. 4.
    Eiber, M., Maurer, T., Beer, A., Souvatzoglou, M., Holzapfel, K., Ruffani, A., Wester, H., Schwaiger, M.: Detection rate for a novel 68GA-PSMA PET-ligand in patients with biochemical recurrence of prostate cancer using PET/CT and PET/MR imaging. In: Society of Nuclear Medicine Annual Meeting Abstracts, vol. 55, p. 13. Soc. Nuclear Med. (2014)Google Scholar
  5. 5.
    Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., Fichtinger, G.: Plus: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans. Biomed. Eng. 61(10), 2527–2537 (2014)CrossRefGoogle Scholar
  6. 6.
    Marks, L., Young, S., Natarajan, S.: MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr. Opin. Urol. 23(1), 43 (2013)CrossRefGoogle Scholar
  7. 7.
    Mitra, J., Kato, Z., Martí, R., Oliver, A., Lladó, X., Sidibé, D., Ghose, S., Vilanova, J.C., Comet, J., Meriaudeau, F.: A spline-based non-linear diffeomorphism for multimodal prostate registration. Med. Image Anal. 16(6), 1259–1279 (2012)CrossRefGoogle Scholar
  8. 8.
    Schroeder, W.J.: The visualization toolkit users guide: updated for version 4.0. Kitware (1998)Google Scholar
  9. 9.
    Sparks, R., Bloch, B.N., Feleppa, E., Barratt, D., Madabhushi, A.: Fully automated prostate magnetic resonance imaging and transrectal ultrasound fusion via a probabilistic registration metric. In: SPIE Medical Imaging, pp. 86710A–86710A. International Society for Optics and Photonics (2013)Google Scholar
  10. 10.
    Sperling, D.: MRI-ultrasound fusion imaging. In: Bard, R.L., Fütterer, J.J., Sperling, D. (eds.) Image Guided Prostate Cancer Treatments, pp. 115–123. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Tokuda, J., Fischer, G.S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., Liu, H., Blevins, J., Arata, J., Golby, A.J., et al.: Openigtlink: an open network protocol for image-guided therapy environment. Int. J. Med. Robot. Comput. Assist. Surg. 5(4), 423–434 (2009)CrossRefGoogle Scholar
  12. 12.
    Turkbey, B., Pinto, P.A., Choyke, P.L.: Imaging techniques for prostate cancer: implications for focal therapy. Nat. Rev. Urol. 6(4), 191–203 (2009)CrossRefGoogle Scholar
  13. 13.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar
  14. 14.
    Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., Metaxas, D., Whitaker, R.: Engineering and algorithm design for an image processing API: a technical report on ITK-the insight toolkit. Studies in Health Technology and Informatics, pp. 586–592 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amit Shah
    • 1
  • Oliver Zettinig
    • 1
  • Tobias Maurer
    • 2
  • Cristina Precup
    • 1
  • Christian Schulte zu Berge
    • 1
  • Jakob Weiss
    • 1
  • Benjamin Frisch
    • 1
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenMunichGermany
  2. 2.Poliklinik und Klinik für Urologie, Klinikum Rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations