Monitoring of a Potential Harmful Algal Species in the Berre Lagoon by Automated In Situ Flow Cytometry

  • Mathilde Dugenne
  • Mélilotus Thyssen
  • Nicole Garcia
  • Nicolas Mayot
  • Guillaume Bernard
  • Gérald GrégoriEmail author
Conference paper


The vicinity of urban activity and industry (petrochemistry) around the Berre lagoon (southeast of France) has induced the degradation of its ecosystem, characterized by a permanent eutrophic state. In particular, a power plant has discharged substantial inputs of enriched freshwater in the lagoon since 1966. Due to these high nutrient inputs and also to regeneration rates, several species of phytoplankton regularly bloom in the lagoon at spring, summer, or autumn. Peaks of phytoplanktonic biomass (>150 μg Chla/dm3) are generally followed by intense heterotrophic activities leading to O2 consumption with hypoxic or anoxic episodes. The study of phytoplankton dynamics is thus of primary importance.

Within the framework of an ecological survey, an automated platform of in situ instruments was set up in a laboratory located on the “Berre l’Etang” harbor to assess biological and hydrological features of the lagoon at short time scale during October 2011. The phytoplanktonic community was characterized by a Cytosense autonomous flow cytometer (Cytobuoy, Netherlands) operating at high frequency (hourly sampling) in order to detect sudden changes of species compositions and abundances. In parallel, hydrological sensors have measured several physicochemical variables of the water directly pumped from the lagoon (1.5 m depth) to the field laboratory.

In October 2011, among the various phytoplanktonic species optically resolved by the Cytosense, the dinoflagellate Akashiwo sanguinea has been detected. It is known for causing fish and seabird death when its abundance is high and for having a potential toxicity on human consumed shellfish. On October 6, nutrient concentration combined with a weak hydrodynamic state triggered a large development of this species. Concentration reached up to 450 cells/cm3, leading to a fast increase in chlorophyll concentration (>20 μg Chla/dm3). However, these dinoflagellates were quickly affected after a sudden wind (mistral, 330°–360°) event with mean speed exceeding 20 m/s: on October 7, 2011, A. sanguinea abundance dropped down below 20 cells/cm3.

These results, out of reach of more conventional methods with manual sampling, underline the power of in situ automated monitoring to follow in near real time the dynamics of phytoplankton in general and also to target some particular species of interest such as harmful algae.


Harmful phytoplanktonic species In situ flow cytometry Berre lagoon 


  1. Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Red tides: biology, environmental science and toxicology. Elsevier Science Publishing Co., pp 11–16Google Scholar
  2. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342–347CrossRefGoogle Scholar
  3. Anderson DM, Andersen P, Bricelj VM, Cullen JJ, Rensel JE (2001) Monitoring and management strategies for harmful algal blooms in coastal waters, APEC #201-MR-01.1, Asia Pacific economic program, Singapore, and intergovernmental oceanographic commission technical series no. 59, ParisGoogle Scholar
  4. Belin C, Berthome J-P (1988) Bilan des perturbations phytoplanctoniques observées sur les côtes françaises en 1986. Rapport IFREMER, pp 1–184Google Scholar
  5. Botes L, Smit AJ, Cook PA (2003) The potential threat of algal blooms to the abalone (Haliotis midae) mariculture industry situated around the South African coast. Harmful Algae 2:247–259CrossRefGoogle Scholar
  6. Cardwell RD, Olsen S, Carr MI, Sanborn EW (1979) Causes of oyster mortality in South Puget Sound. NOAA Technical Memorandum, ERL MESA-39, Environmental Research Laboratories, Marine Ecosystems Analysis Program, BoulderGoogle Scholar
  7. Cloern JE (1996) Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev Geophys 34:127–168CrossRefGoogle Scholar
  8. Du X, Peterson W, McCulloch A, Liu G (2011) An unusual bloom of the dinoflagellate Akashiwo sanguinea off the central Oregon, USA, coast in autumn 2009. Harmful Algae 10:784–793CrossRefGoogle Scholar
  9. Dubelaar GBJ, Gerritzen PL (2000) CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci Mar 64:255–265CrossRefGoogle Scholar
  10. Dubelaar GBJ, Gerritzen PL, Beeker AER, Jonker RR, Tangen K (1999) Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 37:247–254Google Scholar
  11. GIPREB (2011) Bilan du suivi écologique 2011.
  12. Gouze E, Raimbault P, Garcia N, Picon P (2008) Nutrient dynamics and primary production in the eutrophic Berre lagoon (Mediterranean, France). Transit Waters Bull 2:17–40Google Scholar
  13. Group M (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166CrossRefGoogle Scholar
  14. Jessup DA, Miller MA, Ryan J-P et al (2009) Mass stranding of marine birds caused by a surfactant-producing red tide. PLoS ONE 4:e4550CrossRefGoogle Scholar
  15. Kremp A (2001) Effects of cyst resuspension on germination and seeding of two bloom- forming dinoflagellates in the Baltic Sea. Mar Ecol Prog Ser 216:57–66CrossRefGoogle Scholar
  16. Litchman E, Neale P, Banaszak A (2002) Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnol Oceanogr 47:86–94CrossRefGoogle Scholar
  17. Malkassian A (2012) Méthodes d’analyse fonctionnelle et multivariée appliquées à l’étude du fonctionnement écologique des assemblages phytoplanctoniques de l’étang de Berre. Thesis. Université de la MéditerranéeGoogle Scholar
  18. Manté C, Michez N (2010) Expertise pour le traitement et l’analyse statistique des données issues du suivi des indicateurs biologiques dans l’étang de Berre. Rapport GIPREB, pp 1–82Google Scholar
  19. Matsubara T, Nagasoe S, Yamasaki Y, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007) Effects of temperature, salinity and irradiance on the growth of the dinoflagellates Akashiwo sanguinea. J Exp Mar Biol Ecol 342:226–230CrossRefGoogle Scholar
  20. Mayot N, Gouze E, Malet N (2013) Bilan des apports à l’étang de Berre et état des lieux de l’eutrophisation. Les actes des rencontres LAGUN’R, pp 128–141Google Scholar
  21. Minas M (1976) Production organique primaire dans un milieu saumâtre eutrophe (Etang de Berre). Effets d’une forte dilution (dérivation des eaux de la Durance). Mar Biol 35:13–29CrossRefGoogle Scholar
  22. Moore SK, Trainer VL, Mantua NJ, Parker MS, Laws EA, Backer LC, Fleming LE (2008) Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ Health 7:1–12CrossRefGoogle Scholar
  23. Nérini D, Manté C, Durbec J-P, Garica F (2001) Une méthode statistique de détermination de séquences caractéristiques dans une série temporelle de plusieurs variables. Application à la physico-chimie des eaux de l’étang de Berre. Earth Planet Sci 332:457–464Google Scholar
  24. Peeters JCH, Dubelaar GBJ, Ringelberg J, Visser JWM (1989) Optical plankton analyser: a flow cytometer for plankton analysis, I: design considerations. Cytometry 10:522–528CrossRefGoogle Scholar
  25. Raimbault P, Beker B, Garica N, Fornier M, Gouze E (2013) L’étang de Berre, cycle de la matière, production primaire et communautés phytoplanctoniques. Les actes des rencontres LAGUN’R, pp 143–157Google Scholar
  26. Shipe RF, Leinweber A, Gruber N (2008) Abiotic controls of potentially harmful algal blooms in Santa Monica Bay, California. Cont Shelf Res 28:2584–2593CrossRefGoogle Scholar
  27. Smayda TJ (1997) What is a bloom? Limnol Oceanogr 42:1132–1136CrossRefGoogle Scholar
  28. Thyssen M, Tarran GA, Zubkov MV, Holland RJ, Gregori G, Burkill PH, Denis M (2008) The emergence of automated high-frequency flow cytometry: revealing temporal and spatial phytoplankton variability. J Plankton Res 30:333–343CrossRefGoogle Scholar
  29. Tindall DR, Dickey RW, Carlson RD, Morey-Gaines G (1984) Ciguatoxigenic dinoflagellates from the Caribbean Sea. Seafood Toxin 21:225–240CrossRefGoogle Scholar
  30. Vazquez EJ, Lizarraga I, Schmidt CJ, Tapia A, Cortes D, Sandoval F, Tapia A, Guzman JJ (2011) Impact of harmful algal blooms on wild and cultured animals in the Gulf of California. J Environ Biol 32:413–423Google Scholar
  31. Zigone A, Enevoldsen HO (2000) The diversity of harmful algal blooms: a challenge for science and management. Ocean Coast Manag 43:725–748CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mathilde Dugenne
    • 1
    • 2
  • Mélilotus Thyssen
    • 1
    • 2
  • Nicole Garcia
    • 1
    • 2
  • Nicolas Mayot
    • 3
  • Guillaume Bernard
    • 3
  • Gérald Grégori
    • 1
    • 2
    Email author
  1. 1.Université Sud Toulon Var, IRD, CNRSAix-Marseille UniversityMarseilleFrance
  2. 2.Mediterranean Institute of OceanographyMarseilleFrance
  3. 3.GIPREB Syndicat MixteBerre-l’ÉtangFrance

Personalised recommendations