Advertisement

Assembling Supramolecular Rotors on Surfaces Under Ambient Conditions

  • Josep Puigmartí-Luis
  • Wojciech J. Saletra
  • Asensio González
  • Lluïsa Pérez-García
  • David B. Amabilino
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The formation of supramolecular rotor-type systems on surfaces under ambient conditions is discussed. We present in detail the assembly of a rotor on a gold surface from solution, where the surface acts as a stator, a pyridyl containing thiol acts as the axle, and a C4 symmetrical porphyrin bearing “paddle-like” arms is the intended rotator. The effective non-covalent attachment of the rotator to the axle is achieved instantly in solution. However, when the axle forms part of a self-assembled monolayer (SAM), the complex formation is practically negated if the SAM’s organization is not appropriate. Thus, the SAM formed on gold by the pyridyl thiol subject of this study does not bind the rotator part of the system—a zinc(II)porphyrin bearing four biphenyl moieties. This negative allosteric surface effect can be overturned by combining the pyridyl thiol with dodecanethiol: the resulting mixed SAM contains pyridyl groups which are oriented quasi-perpendicular to the surface and are therefore available for binding. The difference in the surface organization is achieved using only 1 part in 10 of the alkanethiol (which forms small ordered domains alone). This dramatic effect may find use in other areas where SAMs are used as template layers because the capacity for the surface-anchored ligand to bind solution-borne compounds is affected by its orientation. Exposure of this mixed monolayer to a solution of the zinc(II)porphyrin results in attachment of this rotator component to the surface, which was imaged by scanning tunnelling microscopy (STM). Alternatively, formation of the axle–rotator complex in solution followed by chemisorption of this supramolecular object to the metal surface leads (in places) to a dense layer of the rotators. The presence of the porphyrin was confirmed by mass spectrometry. The results show how the bottom-up route employed can influence the arrangement of ligating moieties in a monolayer, provide a protocol for the preparation of sparse and dense layers of rotors on surfaces, and thereby help plot the road map to the bottom-up creation of surface-based molecular machines based on interconnected rotors.

Keywords

Scanning Tunnelling Microscopy Gold Surface Scanning Tunnelling Microscopy Image Molecular Machine Mixed Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research reported here was supported by the MINECO, Spain (projects CTQ2010-16339 and TEC2011-29140-C03-02), and the DGR, Catalonia (Project 2009 SGR 158). The authors acknowledge warmly Dr. Daniel Ruiz-Molina for the loan of the STM head. JPL thanks the MINECO for a Ramón y Cajal contract (RYC-2011-08071).

References

  1. 1.
    Koepf, M., Cherioux, F., Wytko, J.A., Weiss, J.: 1D and 3D surface-assisted self-organization. Coord. Chem. Rev. 256, 2872–2892 (2012). doi: 10.1016/j.ccr.2012.05.039 CrossRefGoogle Scholar
  2. 2.
    Slingenbergh, W., de Boer, S.K., Cordes, T., Browne, W.R., Feringa, B.L., Hoogenboom, J.P., De Hosson, J.T.M., van Dorp, W.F.: Selective functionalization of tailored nanostructures. ACS Nano 6, 9214–9220 (2012). doi: 10.1021/nn303571p CrossRefGoogle Scholar
  3. 3.
    Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012). doi: 10.1016/j.cis.2011.11.001 CrossRefGoogle Scholar
  4. 4.
    Fabiano, S., Pignataro, B.: Selecting speed-dependent pathways for a programmable nanoscale texture by wet interfaces. Chem. Soc. Rev. 41, 6859–6873 (2012). doi: 10.1039/c2cs35074b CrossRefGoogle Scholar
  5. 5.
    Bakewell, D.J.G., Nicolau, D.V.: Protein linear molecular motor-powered nanodevices. Aust. J. Chem. 60, 314–332 (2007). doi: 10.1071/CH06456 CrossRefGoogle Scholar
  6. 6.
    Schaap, I.A.T., Carrasco, C., de Pablo, P.J., Schmidt, C.F.: Kinesin Walks the line: single motors observed by atomic force microscopy. Biophys. J. 100, 2450–2456 (2011). doi: 10.1016/j.bpj.2011.04.015 CrossRefGoogle Scholar
  7. 7.
    Boyle, M.M., Smaldone, R.A., Whalley, A.C., Ambrogio, M.W., Botros, Y.Y., Stoddart, J.F.: Mechanised materials. Chem. Sci. 2, 204–210 (2011). doi: 10.1039/c0sc00453g CrossRefGoogle Scholar
  8. 8.
    Sauvage, J.-P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998). doi: 10.1021/ar960263r CrossRefGoogle Scholar
  9. 9.
    Browne, W.R., Feringa, B.L.: Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006). doi: 10.1038/nnano.2006.45 CrossRefGoogle Scholar
  10. 10.
    Balzani, V., Credi, A., Venturi, M.: Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008). doi: 10.1002/cphc.200700528 CrossRefGoogle Scholar
  11. 11.
    Chiang, P.-T., Mielke, J., Godoy, J., Guerrero, J.M., Alemany, L.B., Villagómez, C.J., Saywell, A., Grill, L., Tour, J.M.: Toward a light-driven motorized nanocar: synthesis and initial imaging of single molecules. ACS Nano 6, 592–597 (2012). doi: 10.1021/nn203969b CrossRefGoogle Scholar
  12. 12.
    Chiaravalotti, F., Gross, L., Rieder, K.-H., Stojkovic, S.M., Gourdon, A., Joachim, C., Moresco, F.: A rack-and-pinion device at the molecular scale. Nat. Mater. 6, 30–33 (2007). doi: 10.1038/nmat1802 CrossRefGoogle Scholar
  13. 13.
    Manzano, C., Soe, W.-H., Wong, H.S., Ample, F., Gourdon, A., Chandrasekhar, N., Joachim, C.: Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat. Mater. 8, 576–579 (2009). doi: 10.1038/NMAT2467 CrossRefGoogle Scholar
  14. 14.
    Gimzewski, J.K., Joachim, C., Schlittler, R.R., Langlais, V., Tang, H., Johannsen, I.: Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998). doi: 10.1126/science.281.5376.531 CrossRefGoogle Scholar
  15. 15.
    Tanaka, H., Ikeda, T., Takeuchi, M., Sada, K., Shinkai, S., Kawai, T.: Molecular rotation in self-assembled multidecker porphyrin complexes. ACS Nano 5, 9575–9582 (2011). doi: 10.1021/nn203773p CrossRefGoogle Scholar
  16. 16.
    Yoshimoto, S., Honda, Y., Ito, O., Itaya, K.: Supramolecular pattern of fullerene on 2D bimolecular “chessboard” consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 130, 1085–1092 (2008). doi: 10.1021/ja077407p CrossRefGoogle Scholar
  17. 17.
    Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005). doi: 10.1021/cr0300993 CrossRefGoogle Scholar
  18. 18.
    Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N., Sykes, E.C.H.: Experimental demonstration of a single-molecule electric motor. Nat. Nanotech. 6, 625–629 (2011). doi: 10.1038/NNANO.2011.142 CrossRefGoogle Scholar
  19. 19.
    Perera, U.G.E., Ample, F., Kersell, H., Zhang, Y., Vives, G., Echeverria, J., Grisolia, M., Rapenne, G., Joachim, C., Hla, S.W.: Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotech. 8, 46–51 (2013). doi: 10.1038/NNANO.2012.218 CrossRefGoogle Scholar
  20. 20.
    Puigmartí-Luis, J., Saletra, W.J., González, A., Amabilino, D.B., Pérez-García, L.: Bottom-up assembly of a surface-anchored supramolecular rotor enabled using a mixed self-assembled monolayer and pre-complexed components. Chem. Commun. 50, 82–84 (2014). doi: 10.1039/C3CC44794D CrossRefGoogle Scholar
  21. 21.
    Vogel, G.C., Beckmann, B.A.: Binding of pyridine to the phenyl-substituted derivatives of zinc tetraphenylporphine. Inorg. Chem. 15, 483–484 (1976). doi: 10.1021/ic50156a054 CrossRefGoogle Scholar
  22. 22.
    Mamardashvili, G.M., Kulikova, O.M.: The effect of a solvent on complexation of Zn porphyrinates with pyridine. Russ. J. Coord. Chem. 32, 756–760 (2006). doi: 10.1134/S1070328406100101 CrossRefGoogle Scholar
  23. 23.
    Da Cruz, F., Driaf, K., Berthier, C., Lameille, J.-M., Armand, F.: Study of a self-assembled porphyrin monomolecular layer obtained by metal complexation. Thin Solid Films 349, 155–161 (1999). doi: 10.1016/S0040-6090(99)00169-8 CrossRefGoogle Scholar
  24. 24.
    Ferreira, Q., Alcácer, L., Morgado, J.: Stepwise preparation and characterization of molecular wires made of zinc octaethylporphyrin complexes bridged by 4,4′-bipyridine on HOPG. Nanotechnology 22, 435604 (7p) (2011). doi: 10.1088/0957-4484/22/43/435604
  25. 25.
    Dreas-Wlodarczak, A., Müllneritsch, M., Juffmann, T., Cioffi, C., Arndt, M., Mayor, M.: Immobilization of zinc porphyrin complexes on pyridine-functionalized glass surfaces. Langmuir 26, 10822–10826 (2010). doi: 10.1021/la100638u CrossRefGoogle Scholar
  26. 26.
    Salassa, G., Coenen, M.J.J., Wezenberg, S.J., Hendriksen, B.L.M., Speller, S., Elemans, J.A.A.W., Kleij, A.W.: Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level. J. Am. Chem. Soc. 134, 7186–7192 (2012). doi: 10.1021/ja3030802 CrossRefGoogle Scholar
  27. 27.
    Ikeda, M., Takeuchi, M., Shinkai, S., Tani, F., Naruta, Y.: Synthesis of new diaryl-substituted triple-decker and tetraaryl-substituted double-decker lanthanum(III) porphyrins and their porphyrin ring rotational speed as compared with that of double-decker cerium(IV) porphyrins. Bull. Chem. Soc. Jpn 74, 739–746 (2001). doi: 10.1246/bcsj.74.739 CrossRefGoogle Scholar
  28. 28.
    Otsuki, J., Kawaguchi, S., Yamakawa, T., Asakawa, M., Miyake, K.: Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006). doi: 10.1021/la0608617 CrossRefGoogle Scholar
  29. 29.
    Ghiggino, K.P., Hutchison, J.A., Langford, S.J., Latter, M.J., Lee, M.A.P., Lowenstern, P.R., Scholes, C., Takezaki, M., Wilman, B.E.: Porphyrin-based molecular rotors as fluorescent probes of nanoscale environments. Adv. Func. Mater. 17, 805–813 (2007). doi: 10.1002/adfm.200600948 CrossRefGoogle Scholar
  30. 30.
    Guenet, A., Graf, E., Kyritsakas, N., Hosseini, M.W.: Porphyrin-based switchable molecular turnstiles. Chem. Eur. J. 17, 6443–6452 (2011). doi: 10.1002/chem.201100057 CrossRefGoogle Scholar
  31. 31.
    Cnossen, A., Hou, L., Pollard, M.M., Wesenhagen, P.V., Browne, W.R., Feringa, B.L.: Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J. Am. Chem. Soc. 134, 17613–17619 (2012). doi: 10.1021/ja306986g CrossRefGoogle Scholar
  32. 32.
    Otsuki, J., Komatsu, Y., Kobayashi, D., Asakawa, M., Miyake, K.: Rotational libration of a double-decker porphyrin visualized. J. Am. Chem. Soc. 132, 6870–6871 (2010). doi: 10.1021/ja907077e CrossRefGoogle Scholar
  33. 33.
    Yan, S.C., Ding, Z.J., Xie, N., Gong, H.Q., Sun, Q., Guo, Y., Shan, X.Y., Meng, S., Lu, X.H.: Turning on and off the rotational oscillation of a single porphine molecule by molecular charge state. ACS Nano 6, 4132–4136 (2012). doi: 10.1021/nn301099m CrossRefGoogle Scholar
  34. 34.
    Lensen, D., Elemans, J.A.A.W.: Artificial molecular rotors and motors on surfaces: STM reveals and triggers. Soft Matter 8, 9053–9063 (2012). doi: 10.1039/c2sm26235e CrossRefGoogle Scholar
  35. 35.
    Widrig, C.A., Alves, C.A., Porter, M.D.: Scanning tunnelling microscopy of ethanethiolate and normal-octadecanethiolate monolayers spontaneously adsorbed on gold surfaces. J. Am. Chem. Soc. 113, 2805–2810 (1991). doi: 10.1021/ja00008a001 CrossRefGoogle Scholar
  36. 36.
    Vericat, C., Vela, M.E., Salvarezza, R.C.: Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys. Chem. Chem. Phys. 7, 3258–3268 (2005). doi: 10.1039/b505903h CrossRefGoogle Scholar
  37. 37.
    Silien, C., Buck, M., Goretzki, G., Lahaye, D., Champness, N.R., Weidner, T., Zharnikov, M.: Self-assembly of a pyridine-terminated thiol monolayer on Au(111). Langmuir 25, 959–967 (2009). doi: 10.1021/la802966s CrossRefGoogle Scholar
  38. 38.
    Tao, Y.-T., Wu, Ch-Ch., Eu, J.-Y., Lin, W.-L.: Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold. Langmuir 13, 4018–4023 (1997). doi: 10.1021/la9700984 CrossRefGoogle Scholar
  39. 39.
    Pace, G., Petitjean, A., Lalloz-Vogel, M.-N., Harrowfield, J., Lehn, J.-M., Samorì, P.: Subnanometer-resolved patterning of bicomponent self-assembled monolayers on Au(111). Angew. Chem. Int. Ed. 47, 2484–2488 (2008). doi: 10.1002/anie.200704731 CrossRefGoogle Scholar
  40. 40.
    Chen, S., Li, L., Boozer, C.L., Jiang, S.: Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au(111). Langmuir 16, 9287–9293 (2000). doi: 10.1021/la000417i CrossRefGoogle Scholar
  41. 41.
    Wan, L.-J., Hara, Y., Noda, H., Osawa, M.: Dimerization of sulfur headgroups in 4-mercaptopyridine self-assembled monolayers on Au(111) studied by scanning tunneling microscopy. J. Phys. Chem. B 102, 5943–5946 (1998). doi: 10.1021/jp981218z CrossRefGoogle Scholar
  42. 42.
    Penon, O., Marsico, F., Santucci, D., Rodríguez, L., Amabilino, D.B., Pérez-García, L.: Multiply biphenyl substituted zinc(II)porphyrin and phthalocyanine as components for molecular materials. J. Porphyrins Phthalocyanines 16, 1293–1302 (2012). doi: 10.1142/S1088424612501453 CrossRefGoogle Scholar
  43. 43.
    Baber, A.E., Tierney, H.L., Sykes, E.C.H.: A quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385–2391 (2008). doi: 10.1021/nn800497y CrossRefGoogle Scholar
  44. 44.
    Coskun, A., Banaszak, M., Astumian, R.D., Stoddart, J.F., Grzybowski, B.A.: Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012). doi: 10.1039/c1cs15262a CrossRefGoogle Scholar
  45. 45.
    von Delius, M., Leigh, D.A.: Walking molecules. Chem. Soc. Rev. 40, 3656–3676 (2011). doi: 10.1039/c1cs15005g CrossRefGoogle Scholar
  46. 46.
    Penon, O., Moro, A.J., Santucci, D., Amabilino, D.B., Lima, J.C., Pérez-García, L., Rodríguez, L.: Molecular recognition of aliphatic amines by luminescent Zn-porphyrins. Inorg. Chim. Acta 417, 222–229 (2014). doi: 10.1016/j.ica.2013.12.028

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Josep Puigmartí-Luis
    • 1
  • Wojciech J. Saletra
    • 1
  • Asensio González
    • 2
  • Lluïsa Pérez-García
    • 2
    • 3
  • David B. Amabilino
    • 1
  1. 1.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de BellaterraCerdanyola del Vallès, CataloniaSpain
  2. 2.Departament de Farmacologia i Química TerapèuticaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institut de Nanociència i Nanotecnologia IN2UB, Universitat de BarcelonaBarcelona, CataloniaSpain

Personalised recommendations