Progress in Earth System Science: What Does It Take to Make Our Ideas Clear?

Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

To describe the progress in Earth System Science, a conceptual framework is proposed which includes hypothesis testing, the formulation of models with different complexity as well as expressing discoveries in terms of metaphors. The later approach is demonstrated by the conveyor belt concept in oceanography which influenced the discussion about abrupt climate changes where the ocean circulation may be involved. It is argued that the combination of different methodologies/complexities and independent results is necessary to prevent over-simplistic views in each discipline of Earth System Science. Emphasis is given on typical steps to obtain new ideas for a new discovery. Examples for over-simplistic views are mentioned for past climate information from proxy data. The recorder system of the proxy has to be taken into account, otherwise the climate information can be misinterpreted. It is concluded that in the field of Earth System Science, basic knowledge and true collaborative problem solving is necessary to make scientists aware of the underlying principles, the limitations and open questions. This is furthermore necessary to develop and sharpen our ideas about the complex Earth System.

References

  1. Berger A (1988) Milankovitch theory and climate. Rev Geophys 26(4):624–657CrossRefGoogle Scholar
  2. Bohr N (1928) The quantum postulate and the recent development of atomic theory. Nature 121:580–590CrossRefGoogle Scholar
  3. Bornholdt S, Jensen MH, Sneppen K (2011) Emergence and decline of scientific paradigms. Phys Rev Lett 106:058701CrossRefGoogle Scholar
  4. Broecker WS (1991) The great ocean conveyor. Oceanography 4(2):79–89CrossRefGoogle Scholar
  5. Brüning R, Lohmann G (1999) Charles S. Peirce on creative metaphor: a case study of the conveyor belt metaphor in oceanography. Found Sci 4(4):389–403 (Special issue for scientific discovery and creativity)Google Scholar
  6. Bryan F (1986) High latitude salinity effects and inter-hemispheric thermohaline circulations. Nature 323:301–304CrossRefGoogle Scholar
  7. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  8. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H (1984) North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. Geophysical monograph series, vol 29. AGU, Washington, DC, pp 288–298Google Scholar
  9. Descartes R (1644) Principia philosophiae. English edition: Principles of Philosophy (trans: Rodger V, Miller RP (Reprint ed)). Reidel, Dordrecht. ISBN 90-277-1451-7Google Scholar
  10. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549–560CrossRefGoogle Scholar
  11. Einstein A (1949) Philosopher-scientist. The library of living philosophers series. Cambridge University Press, CambridgeGoogle Scholar
  12. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29(289):1977Google Scholar
  13. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158CrossRefGoogle Scholar
  14. Gershenfeld N (2003) The nature of mathematical modeling. Cambridge University Press, Cambridge 344 ppGoogle Scholar
  15. Grosfeld K, Lohmann G, Wolf-Gladrow D, Ladstätter-Weißenmayer A, Notholt J, Unnithan V, Wegner A (2013) The structural and educational concept in an interdisciplinary research school for earth system science. In: Lohmann G, Grosfeld K, Wolf-Gladrow D, Unnithan V, Notholt J, Wegner A (eds) Earth system science: bridging the gaps between disciplines perspectives from a multi-disciplinary Helmholtz Research School. Springer briefs in earth system sciences, pp 3–8. Springer, Heidelberg, vol 138. p 61 illus., 52 in color. doi:10.1007/978-3-642-32235-8. ISBN 978-3-642-32234-1
  16. Hasselmann K (1976) Stochastic climate models. Part I: theory. Tellus 28:473–485CrossRefGoogle Scholar
  17. Hesse T, Wolf-Gladrow D, Lohmann G, Bijmaa J, Mackensen A, Zeebe RE (2014) Modelling d13C in benthic foraminifera: insights from model sensitivity experiments. Mar Micropaleontol 112:50–61. doi: 10.1016/j.marmicro.2014.08.001
  18. Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology, 5th edn. Academic Press, Waltham. ISBN-13: 978-0123848666; ISBN-10: 0123848660Google Scholar
  19. IPCC (2007) Report of the intergovernmental panel on climate change. 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996Google Scholar
  20. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535. doi:10.1017/CBO9781107415324
  21. Kuhn TS (1962) The Structure of scientific revolutions, 1st edn, 4th edn 2012. University of Chicago Press, Chicago. ISBN 9780226458113Google Scholar
  22. Kwasniok F, Lohmann G (2009) Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability. Phys Rev E 80(6):066104. doi:10.1103/PhysRevE.80.066104 CrossRefGoogle Scholar
  23. Laepple T, Werner M, Lohmann G (2011) Synchronicity of Antarctic temperatures and local solar insolation on orbital time-scales. Nature 471:91–94. doi:10.1038/nature09825 CrossRefGoogle Scholar
  24. Lee K, Bero L (2006) Ethics: increasing accountability. What authors, editors and reviewers should do to improve peer review. Nature. doi:10.1038/nature05007
  25. Lemke P (1977) Stochastic climate models, part 3, application to zonally averaged energy balance models. Tellus 29:385–392CrossRefGoogle Scholar
  26. Liu Z, Zhua J, Rosenthal Y, Zhang X, Otto-Bliesner B, Timmermann A, Smith RS, Lohmann G, Zheng W, Timm OE (2014) The holocene temperature conundrum. PNAS 111(34):E3501–E3505. doi:10.1073/pnas.1407229111
  27. Lohmann G, Schneider J (1999) Dynamics and predictability of Stommel’s box model: a phase space perspective with implications for decadal climate. Tellus A 51(2):326–336Google Scholar
  28. Lohmann G, Grosfeld K, Wolf-Gladrow D, Unnithan V, Notholt J, Wegner A (2013a) General aspects of earth system science. In: Lohmann G, Grosfeld K, Wolf-Gladrow D, Unnithan V, Notholt J, Wegner A (eds) Earth system science: bridging the gaps between disciplines perspectives from a multi-disciplinary Helmholtz Research School. Springer Briefs in earth system sciences, p 61 illus., 52 in color, vol 138. Springer, Heidelberg, pp 1–3. doi:10.1007/978-3-642-32235-8. ISBN 978-3-642-32234-1
  29. Lohmann G, Wackerbarth A, Langebroek P, Werner M, Fohlmeister J, Scholz D, Mangini A (2013b) Simulated European stalagmite record and its relation to a quasi-decadal climate mode. Clim Past 9:89–98. doi:10.5194/cp-9-89-2013 CrossRefGoogle Scholar
  30. Lohmann G, Pfeiffer M, Laepple T, Leduc G, Kim J-H (2013c) A model-data comparison of the Holocene global sea surface temperature evolution. Clim Past 9:1807–1839. doi:10.5194/cp-9-1807-2013 CrossRefGoogle Scholar
  31. Lorenz S, Lohmann G (2004) Acceleration technique for Milankovitch typeforcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Clim Dyn 23(7–8):727–743. doi:10.1007/s00382-004-0469-y CrossRefGoogle Scholar
  32. Manduca CA, Kastens KA (2012) Fostering knowledge integration in geoscience education. Geoscience and geoscientists: uniquely equipped to study earth. Geol Soc Am Spec Pap 486:1–12. doi:10.1130/2012.2486(01 Google Scholar
  33. Marshall J, Plumb RA (2007) Atmosphere, ocean and climate dynamics: an introductory text. Int Geophys 93:345 (ISBN 0125586914)Google Scholar
  34. McGuffie K, Henderson-Sellers A (2014) The climate modelling primer, 4 rev edn, p 480. ISBN 111994337XGoogle Scholar
  35. McCright AM, Dunlap RE (2000) Challenging global warming as a social problem: an analysis of the conservative movement’s counter-claims. Soc Probl 47(4):499–522. doi:10.2307/3097132 CrossRefGoogle Scholar
  36. Meggers H, Buschmann M, Grosfeld K, Klebe S (2015) The educational program of the Earth System Science Research School (ESSReS), In: Lohmann G, Meggers H, Unnithan V, Wolf-Gladrow D, Notholt J, Bracher A (eds) Towards an interdisciplinary approach in Earth System Science, Springer, Heidelberg, Germany, pp 9–17. doi: 10.1007/978-3-319-13865-7_2
  37. Mori H, Fujisaka H, Shigematsu H (1974) A new expansion of the master equation. Prog Theoret Phys 51(1):109–122CrossRefGoogle Scholar
  38. Oreskes N, Conway E (2010) Merchants of doubt: how a handful of scientists obscured the truth on issues from tobacco smoke to global warming, 1st edn. Bloomsbury Press, London. ISBN 978-1-59691-610-4Google Scholar
  39. Oeschger H, Beer J, Siegenthaler U, Stauffer B, Dansgaard W, Langway CC (1984) Late glacial climate history from ice cores. In: JE Hansen, T Takahashi (eds) Climate processes and climate sensitivity. Geophysical monograph series, vol 29. AGU, Washington, DC, pp 299–306Google Scholar
  40. Peirce CS (1878) How to make our ideas clear. Popul Sci Mon 12:286–302Google Scholar
  41. Peirce CS (1974) Collected papers of Charles Sanders Pierce. In: Hartshorne C, Weiss P (eds), vol I–VI. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  42. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  43. Rooth C (1982) Hydrology and ocean circulation. Prog Oceanog 11:131–149CrossRefGoogle Scholar
  44. Russill C, Nyssa Z (2009) The tipping point trend in climate change communication. Glob Environ Change 19(3):336–344CrossRefGoogle Scholar
  45. Saltzman B (2002) Dynamical paleoclimatology—a generalized theory of global climate change. Academic Press, San Diego p 354Google Scholar
  46. Salzmann U, Dolan AM, Haywood AM, Chan W-L, Hill DJ, Abe-Ouchi A, Otto-Bliesner B, Bragg F, Chandler MA, Contoux C, Jost A, Kamae Y, Lohmann G, Lunt DJ, Pickering SJ, Pound MJ, Ramstein G, Rosenbloom NA, Sohl L, Stepanek C, Ueda H, Zhang Z (2013) How well do models reproduce warm terrestrial climates of the Pliocene? Nat Clim Change. doi:10.1038/nclimate2008 Google Scholar
  47. Singer SF (2007) Climate policy from Rio to Kyoto: a political issue for 2000- and beyond. Essays in public policy, no. 102. Stanford University: Hoover Institution, Stanford, p 49. ISBN 978-0-8179-4372-1Google Scholar
  48. Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18:1087. doi:10.1029/2003PA000920,4 CrossRefGoogle Scholar
  49. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230CrossRefGoogle Scholar
  50. Tewksbury BJ, Manduca CA, Mogk DW, Macdonald RH (2013) Geoscience education for the Anthropocene. Geol Soc Am Spec Pap 501:189–201. doi:10.1130/2013.2501(08)
  51. Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1931CrossRefGoogle Scholar
  52. Valdes P (2011) Built for stability. Nat Geosci 4:414–416. doi:10.1038/ngeo1200 CrossRefGoogle Scholar
  53. Weyl H (1927) Philosophie der Mathematik und Naturwissenschaft. Oldenbourg Verlag, MünchenGoogle Scholar
  54. Zwanzig R (1960) Ensemble method in the theory of irreversibility. J Chem Phys 33:1338CrossRefGoogle Scholar
  55. Zhang X, Lohmann G, Knorr G, Purcell C (2014) Control of rapid glacial climate shifts by variations in intermediate ice-sheet volume. Nature 512:290–294. doi:10.1038/nature13592 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations