A Light-Weight Robot Simulator for Modular Robotics

  • Vojtěch Vonásek
  • Daniel Fišer
  • Karel Košnar
  • Libor Přeučil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8906)

Abstract

Physical simulation are frequently used in robotics for evaluation of control strategies or planning techniques. In this paper, a novel, light-weight open-source robotic simulator is introduced. It provides both physical and sensor simulation and it was designed to be run in a headless mode, i.e., without any visualization, which makes it suitable for computational grids. Despite this fact, the progress of the simulation can be later visualized using external tools like Blender 3D. This brings advantage in comparison to more general and powerful simulators that cannot be easily run on such machines. The paper briefly introduces architecture of the simulator with description of its utilization in evolutionary modular robotics.

Keywords

robotic simulation modular robotics evolutionary robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bullet physics engine, http://bulletphysics.org/
  2. 2.
  3. 3.
  4. 4.
    Open dynamics engine, http://www.ode.org/
  5. 5.
  6. 6.
    Swarm-bots: Swarms of self-assembling artifacts, http://www.swarm-bots.org/
  7. 7.
    V-rep, virtual robot experimentation platform, http://www.coppeliarobotics.com/
  8. 8.
    Vortex physical engine, http://www.vxsim.com/en/simulators
  9. 9.
    Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (November/December 1995)Google Scholar
  10. 10.
    Awaad, I., León, B.: XPERSim: A simulator for robot learning by experimentation. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 5–16. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot simulator for research and education. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1400–1405 (April 2007)Google Scholar
  12. 12.
    CESNET. Metacentrum grid infrastructure, http://www.metacentrum.cz/
  13. 13.
    Fišer, D., Vonásek, V.: Simulator sim, http://imr.felk.cvut.cz/Research/Simulator
  14. 14.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  15. 15.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)CrossRefGoogle Scholar
  16. 16.
    Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  17. 17.
    Ijspeert, A.J., Hallam, J., Willshaw, D.: Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology. Adaptive Behavior 7(2), 151–172 (1999)CrossRefGoogle Scholar
  18. 18.
    Cerny, J., Kubalik, J.: Co-evolutionary approach to design of robotic gait. In: Proceedings of the EvoStar 2013 (2013)Google Scholar
  19. 19.
    Kanehiro, F., Hirukawa, H., Kajita, S.: Openhrp: Open architecture humanoid robotics platform. I. J. Robotic Res. 23(2), 155–165 (2004)CrossRefGoogle Scholar
  20. 20.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), September 30-October 2, vol. 3, pp. 2149–2154 (2004)Google Scholar
  21. 21.
    Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., Preucil, L.: Syrotek — distance teaching of mobile robotics. IEEE Transactions on Education 56(1), 18–23 (February)Google Scholar
  22. 22.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer (2010)Google Scholar
  23. 23.
    The MachineLab. Mmp-5 mobile robot platform, http://www.themachinelab.com/MMP-5.html
  24. 24.
    Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA 2005), pp. 248–253 (2005)Google Scholar
  25. 25.
    Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)Google Scholar
  26. 26.
    Moubarak, P., Ben-Tzvi, P.: Modular and reconfigurable mobile robotics. Robotics and Autonomous Systems 60(12), 1648–1663 (2012)CrossRefGoogle Scholar
  27. 27.
    Mulder, T., Van De Crommert Hw Duysens, J.: Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait & Posture 7(3), 251–263 (1998)Google Scholar
  28. 28.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65(3), 147–159 (1991)CrossRefMATHGoogle Scholar
  29. 29.
    Vonásek, V., Kulich, M., Krajník, T., Saska, M., Fišer, D., Petřík, V., Přeučil, L.: Techniques for Modeling Simulation Environments for Modular Robotics. In: Proccedings of International Conference on Mathematical Modelling, pp. 1–6. Vienna University of Technology, Vienna (2012)Google Scholar
  30. 30.
    Webots. Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com
  31. 31.
    Winkler, L., Vonasek, V., Worn, H., Preucil, L.: Robot3d—a simulator for mobile modular self-reconfigurable robots. In: 2012 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 464–469 (September 2012)Google Scholar
  32. 32.
    Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D Simulator of Multiple Legged Robots Based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Zykov, V., Chan, A., Lipson, H.: Molecubes: An open-source modular robotics kitGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vojtěch Vonásek
    • 1
  • Daniel Fišer
    • 1
  • Karel Košnar
    • 1
  • Libor Přeučil
    • 1
  1. 1.Faculty of electrical engineeringCTU in PraguePragueCzech Republic

Personalised recommendations