Forecast of Traffic Accidents Based on Components Extraction and an Autoregressive Neural Network with Levenberg-Marquardt

  • Lida Barba
  • Nibaldo Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8891)


In this paper is proposed an improved one-step-ahead strategy for traffic accidents and injured forecast in Concepción, Chile, from year 2000 to 2012 with a weekly sample period. This strategy is based on the extraction and estimation of components of a time series, the Hankel matrix is used to map the time series, the Singular Value Decomposition(SVD) extracts the singular values and the orthogonal matrix, and the components are forecasted with an Autoregressive Neural Network (ANN) based on Levenberg-Marquardt (LM) algorithm. The forecast accuracy of this proposed strategy are compared with the conventional process, SVD-ANN-LM achieved a MAPE of 1.9% for the time series Accidents, and a MAPE of 2.8% for the time series Injured, in front of 14.3% and 21.1% that were obtained with the conventional process.


Autoregressive Neural Network Levenberg-Marquardt Singular Value Decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellán, J., López, G., de Oña, J.: Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems with Applications 40(15), 6047–6054 (2013)CrossRefGoogle Scholar
  2. 2.
    de Oña, J., López, G., Mujalli, R., Calvo, F.: Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accident Analysis & Prevention 51, 1–10 (2013)CrossRefGoogle Scholar
  3. 3.
    Chang, L., Chien, J.: Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science 51(1), 17–22 (2013)CrossRefGoogle Scholar
  4. 4.
    Fogue, M., Garrido, P., Martinez, F., Cano, J., Calafate, C., Manzoni, P.: A novel approach for traffic accidents sanitary resource allocation based on multi-objective genetic algorithms. Expert Systems with Applications 40(1), 323–336 (2013)CrossRefGoogle Scholar
  5. 5.
    Commandeur, J., Bijleveld, F., Bergel-Hayat, R., Antoniou, C., Yannis, G., Papadimitriou, E.: On statistical inference in time series analysis of the evolution of road safety. Accident Analysis & Prevention 60, 424–434 (2013)CrossRefGoogle Scholar
  6. 6.
    Weijermars, W., Wesemann, P.: Road safety forecasting and ex-ante evaluation of policy in the Netherlands. Transportation Research Part A: Policy and Practice 52, 64–72 (2013)Google Scholar
  7. 7.
    Antoniou, C., Yannis, G.: State-space based analysis and forecasting of macroscopic road safety trends in Greece. Accident Analysis & Prevention 60, 268–276 (2013)CrossRefGoogle Scholar
  8. 8.
    García-Ferrer, A., de Juan, A., Poncela, P.: Forecasting traffic accidents using disaggregated data. International Journal of Forecasting 22(2), 203–222 (2006)CrossRefGoogle Scholar
  9. 9.
    Quddus, M.: Time series count data models: An empirical application to traffic accidents. Accident Analysis & Prevention 40(5), 1732–1741 (2008)CrossRefGoogle Scholar
  10. 10.
    Rojas, I., Pomares, H., Bernier, J.L., Ortega, J., Pino, B., Pelayo, F.J., Prieto, A.: Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing 42(1-4), 267–285 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Palmer, A., Montaño, J., Sesé, A.: Designing an artificial neural network for forecasting tourism time series. Tourism Management 27(5), 781–790 (2006)CrossRefGoogle Scholar
  12. 12.
    Liu, F., Ng, G.S., Quek, C.: RLDDE: A novel reinforcement learning-based dimension and delay estimator for neural networks in time series prediction. Neurocomputing 70(7-9), 1331–1341 (2007)CrossRefGoogle Scholar
  13. 13.
    Roh, S.B., Oh, S.K., Pedrycz, W.: Design of fuzzy radial basis function-based polynomial neural networks. Fuzzy Sets and Systems 185(1), 15–37 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gheyas, I.A., Smith, L.S.: A novel neural network ensemble architecture for time series forecasting. Neurocomputing 74(18), 3855–3864 (2011)CrossRefGoogle Scholar
  15. 15.
    Yang, W., Tse, P.: Development of an advanced noise reduction method for vibration analysis based on singular value decomposition. NDT & E International 36(6), 419–432 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Reninger, P., Martelet, G., Deparis, J., Perrin, J., Chen, Y.: Singular value decomposition as a denoising tool for airborne time domain electromagnetic data. Journal of Applied Geophysics 75(2), 264–276 (2011)CrossRefGoogle Scholar
  17. 17.
    Li, C., Park, S.: An efficient document classification model using an improved back propagation neural network and singular value decomposition. Expert Systems with Applications 36(2), 3208–3215 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Shih, Y., Chien, C., Chuang, C.: An adaptive parameterized block-based singular value decomposition for image de-noising and compression. Applied Mathematics and Computation 218(21), 10370–10385 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kavaklioglu, K.: Robust electricity consumption modeling of Turkey using Singular Value Decomposition. International Journal of Electrical Power & Energy Systems 54, 268–276 (2014)CrossRefGoogle Scholar
  20. 20.
    Al-Zaben, A., Al-Smadi, A.: Extraction of foetal ECG by combination of singular value decomposition and neuro-fuzzy inference system. Physics in Medicine and Biology 51(1), 137 (2006)CrossRefGoogle Scholar
  21. 21.
    Yin, H., Zhu, A., Ding, F.: Model order determination using the Hankel matrix of impulse responses. Applied Mathematics Letters 24(5), 797–802 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Cong, F., Chen, J., Dong, G., Zhao, F.: Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis. Mechanical Systems and Signal Processing 34(1-2), 218–230 (2013)CrossRefGoogle Scholar
  23. 23.
    Shores, T.S.: Applied Linear Algebra and Matrix Analysis, pp. 291–293. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Freeman, J.A., Skapura, D.M.: Neural Networks, Algorithms, Applications, and Programming Techniques. Addison-Wesley, California (1991)zbMATHGoogle Scholar
  25. 25.
    Hagan, M.T., Demuth, H.B., Bealetitle, M.: Neural Network Design. Hagan Publishing, 12.19–12.27 (2002)Google Scholar
  26. 26.
    National Commission of Transit Security,

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lida Barba
    • 1
    • 2
  • Nibaldo Rodríguez
    • 2
  1. 1.Engineering FacultyUniversidad Nacional de ChimborazoRiobambaEcuador
  2. 2.School of Informatics EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations