Generating Object-Oriented Semantic Graph for Text Summarisation

  • Monika Joshi
  • Hui Wang
  • Sally McClean
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8891)

Abstract

In this research paper we propose to extend the semantic graph representation of natural language text to object-oriented semantic graph representation and generate a summary of the original text from this graph. We have provided rules to construct the object-oriented semantic graph and rules to generate the text summary from it. This process has been elaborated through a case study on a news story. An evaluation of the generated summary shows the effectiveness of the proposed approach. This work is a new direction in single document text summarisation research area from semantic perspective and requires further analysis and exploration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2, 159–165 (1958)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Edmundson, H.P.: New methods in automatic extracting. J. ACM 16, 264–285 (1969)CrossRefMATHGoogle Scholar
  3. 3.
    Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization, pp. 10–17 (1997)Google Scholar
  4. 4.
    Nomoto, T., Matsumoto, Y.: A new approach to unsupervised text summarization. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2001, pp. 26–34. ACM, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Svore, K.M.: Enhancing single-document summarization by combining ranknet and third-party sources. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Association for Computational Linguistics (2007)Google Scholar
  6. 6.
    Dunlavy, D.M., O’Leary, D.P., Conroy, J.M., Schlesinger, J.D.: Qcs: A system for querying, clustering and summarizing documents. Inf. Process. Manage. 43, 1588–1605 (2007)CrossRefGoogle Scholar
  7. 7.
    Wong, K.-F., Wu, M., Li, W.: Extractive summarization using supervised and semi-supervised learning. In: Proceedings of the 22nd International Conference on Computational Linguistics, COLING 2008, pp. 985–992. Association for Computational Linguistics, Stroudsburg (2008)Google Scholar
  8. 8.
    Erkan, G., Radev, D.R.: Lexrank: Graph-based lexical centrality as salience in text summarization. J. Artif. Int. Res. 22, 457–479 (2004)Google Scholar
  9. 9.
    Tsatsaronis, G., Varlamis, I., Nørvåg, K.: Semanticrank: ranking keywords and sentences using semantic graphs. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1074–1082. Association for Computational Linguistics (2010)Google Scholar
  10. 10.
    Mihalcea, R., Tarau, P.: Textrank: Bringing order into texts. Association for Computational Linguistics (2004)Google Scholar
  11. 11.
    Yeh, J.-Y., Ke, H.-R., Yang, W.-P.: ispreadrank: Ranking sentences for extraction-based summarization using feature weight propagation in the sentence similarity network. Expert Systems with Applications 35(3), 1451–1462 (2008)CrossRefGoogle Scholar
  12. 12.
    Wan, X., Xiao, J.: Exploiting neighborhood knowledge for single document summarization and keyphrase extraction. ACM Transactions on Information Systems (TOIS) 28(2), 8 (2010)CrossRefGoogle Scholar
  13. 13.
    Joshi, M., Wang, H., McClean, S.I.: Dense semantic graph and its application in single document summarisation. In: Proceedings of the 7th International Workshop on Information Filtering and Retrieval co-located with the 13th Conference of the Italian Association for Artificial Intelligence (AI*IA 2013), Turin, Italy, December 6, pp. 25–36 (2013)Google Scholar
  14. 14.
    Leskovec, J., Milic-Frayling, N., Grobelnik, M., Leskovec, J.: Extracting summary sentences based on the document semantic graph. Microsoft Research, Microsoft Corporation (2005)Google Scholar
  15. 15.
    Abbott, R.J.: Program design by informal english descriptions. Communications of the ACM 26(11), 882–894 (1983)CrossRefMATHGoogle Scholar
  16. 16.
    Elbendak, M., Vickers, P., Rossiter, N.: Parsed use case descriptions as a basis for object-oriented class model generation. Journal of Systems and Software 84(7), 1209–1223 (2011)CrossRefGoogle Scholar
  17. 17.
    Vidya Sagar, V.B.R., Abirami, S.: Conceptual modeling of natural language functional requirements. Journal of Systems and Software 88, 25–41 (2014)CrossRefGoogle Scholar
  18. 18.
    Burton, R.N.: Analysing sentences: An introduction to english syntax (1986)Google Scholar
  19. 19.
    Klinge, A.: The english modal auxiliaries: from lexical semantics to utterance interpretation. Journal of Linguistics 29, 315–357 (1993)CrossRefGoogle Scholar
  20. 20.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)Google Scholar
  21. 21.
    Louis, A., Nenkova, A.: Automatic summary evaluation without human models. In: Notebook Papers and Results, Text Analysis Conference (TAC 2008), Gaithersburg, Maryland (USA) (2008)Google Scholar
  22. 22.
    Rus, V., Lintean, M.C., Banjade, R., Niraula, N.B., Stefanescu, D.: Semilar: The semantic similarity toolkit. In: ACL (Conference System Demonstrations), pp. 163–168. Citeseer (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Monika Joshi
    • 1
  • Hui Wang
    • 1
  • Sally McClean
    • 2
  1. 1.University of UlsterCo. AntrimUK
  2. 2.University of UlsterCo. LondonderryUK

Personalised recommendations