Unsupervised Feature Learning for Human Activity Recognition Using Smartphone Sensors

  • Yongmou Li
  • Dianxi Shi
  • Bo Ding
  • Dongbo Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8891)

Abstract

Feature representation has a significant impact on human activity recognition. While the common used hand-crafted features rely heavily on the specific domain knowledge and may suffer from non-adaptability to the particular dataset. To alleviate the problems of hand-crafted features, we present a feature extraction framework which exploits different unsupervised feature learning techniques to learning useful feature representation from accelerometer and gyroscope sensor data for human activity recognition. The unsupervised learning techniques we investigate include sparse auto-encoder, denoising auto-encoder and PCA. We evaluate the performance on a public human activity recognition dataset and also compare our method with traditional features and another way of unsupervised feature learning. The results show that the learned features of our framework outperform the other two methods. The sparse auto-encoder achieves better results than other two techniques within our framework.

Keywords

human activity recognition unsupervised feature learning sparse auto-encoder denoising auto-encoder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)CrossRefGoogle Scholar
  2. 2.
    Plötz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in ubiquitous computing. In: Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence, vol. 2, pp. 1729–1734. AAAI Press (2011)Google Scholar
  3. 3.
    Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557–565. IEEE (2002)Google Scholar
  4. 4.
    Vollmer, C., Gross, H.-M., Eggert, J.P.: Learning features for activity recognition with shift-invariant sparse coding. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 367–374. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bhattacharya, S., Nurmi, P., Hammerla, N., Plötz, T.: Using unlabeled data in a sparse-coding framework for human activity recognition. arXiv preprint arXiv:1312.6995 (2013)Google Scholar
  6. 6.
    Ng, A.: Sparse autoencoder. CS294A Lecture notes (2011), http://web.stanford.edu/class/cs294a/sparseAutoencoder2011.pdf
  7. 7.
    Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)Google Scholar
  8. 8.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research 11, 3371–3408 (2010)MATHMathSciNetGoogle Scholar
  9. 9.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2013)Google Scholar
  10. 10.
    Bache, K., Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml
  11. 11.
    Goodfellow, I.J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu, R., Bergstra, J., Bastien, F., Bengio, Y.: Pylearn2: a machine learning research library. arXiv preprint arXiv:1308.4214 (2013)Google Scholar
  12. 12.
    Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yongmou Li
    • 1
  • Dianxi Shi
    • 1
  • Bo Ding
    • 1
  • Dongbo Liu
    • 1
  1. 1.National Key Laboratory for Parallel and Distributed Processing, College of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations