Hybrid (Enzymatic and Photocatalytic) Systems for CO2-Water Coprocessing to Afford Energy-Rich Molecules

  • Michele ArestaEmail author
  • Angela Dibenedetto
  • Wojciech Macyk


This chapter deals with selected aspects of man-made solar-driven photoreduction of CO2. In particular, direct photosynthetic processes are discussed which include the use of man-made materials for solar energy capture and utilization in enzymatically driven CO2 reduction to energy-rich C1 molecules. The enzymatic reduction of CO2 requires cofactors which are the energy vectors to enzymes which in turn reduce CO2 to energy-rich C1 molecules. The regeneration of the reduced form of such cofactors is a key step in the whole process. The level at which man-made systems may recycle the cofactor and support the reduction reaction is discussed, and barriers to a full exploitation of the option are highlighted. The use of visible light in the entire process is privileged.

The paper does not cover other uses of solar energy such as thermal devices (solar power concentrators) nor solar-driven pure electrochemical processes, such as the use of PV for water electrolysis and hydrogen generation employed for CO2 chemical reduction.


Man-made photosynthesis Hybrid systems Enzymatic reduction of CO2 Cofactors for CO2 reduction Cofactors regeneration Visible light Use of water as electron donor Organic electron donors 



This work is a part of the “Activation of small molecules in photocatalytic systems” project, realized within the TEAM program awarded by the Foundation for Polish Science, cofinanced by the European Union, Regional Development Fund (TEAM/2012-9/4), and of the IC2R srl program on “Carbon Recycling.”


  1. 1.
    a) Michele Aresta and John V. Schloss Eds, “Enzymatic and Model Carboxylation and Reduction Reactions for CO 2 Utilization” NATO Series, Kluwer Acad. Publ., 1990. b) Michael Hambourger, Gary F. Moore, David M. Kramer, Devens Gust, Ana L. Moore, Thomas A. Moore Chem. Soc. Rev. 2009, 38, 25-35.Google Scholar
  2. 2.
    Michele Aresta, Angela Dibenedetto, Liang-N. He, Analysis of demand for captured CO 2 and products from CO 2 conversion. Report exclusively for Members of the Carbon Dioxide Capture and Conversion (CO2CC) Program of The Catalyst Group, 2012.Google Scholar
  3. 3.
    a) Robin Obert, Bakull C. Dave J. Am. Chem. Soc. 1999, 121(51), 12192-12193; b) Angela Dibenedetto, Paolo Stufano, Wojciech Macyk, Tomasz Baran, Carlo Fragale, Mirco Costa, Michele Aresta ChemSusChem 2012, 5, 373-378.Google Scholar
  4. 4.
    a) Eberhard Steckhan, Sabine Herrmann, Romain Ruppert, Eva Dietz, Markus Frede, Elke Spika Organometallics 1991, 10, 1568-1577; b) Gottfried Unden, Johannes Bongaerts Biochimica et Biophysica Acta-Bioenergetics 1997, 1320(3), 217-234.Google Scholar
  5. 5.
    Corinna Gallus, Bernhard Schink Archives of Microbiology 1998, 169, 333-338.CrossRefGoogle Scholar
  6. 6.
    a) Frank Hollmann, Andreas Schmid, Eberhard Steckhan Angew. Chem. Int. Ed. 2001, 40, 169-171. b) Frank Hollmann, Po-Chi Lin, Bernard Witholt, Andreas Schmid J. Am. Chem. Soc. 2003, 125, 8209-8217. c) Franck Hollmann, K. Hofstetter, Andreas Schmid Trends in Biotechnology 2006, 24, 163-171.Google Scholar
  7. 7.
    Pierre Cuendet, Michael Graetzel Photochem. Photobiol. 1984, 39, 609-612.CrossRefGoogle Scholar
  8. 8.
    Elzbieta Bojarska, Krzysztof Pawlicki, Barbara Czochralska J. Photochem. Photobiol. A: Chem. 1997, 108, 207-213.CrossRefGoogle Scholar
  9. 9.
    Sahng Ha Lee, Jae Hong Kim, Chan Beum Park Chem. Eur. J. 2013, 19, 4392-4406.CrossRefGoogle Scholar
  10. 10.
    Sahng Ha Lee, Dong Heon Nam, Chan Beum Park Adv. Synth. Catal. 2009, 351, 2589-2594.CrossRefGoogle Scholar
  11. 11.
    Sahng Ha Lee, Dong Heon Nam, Jae Hong Kim, Jin-Ook Baeg, Chan Beum Park ChemBioChem 2009, 10, 1621-1624.CrossRefGoogle Scholar
  12. 12.
    Jae Hong Kim, Sahng Ha Lee, Joon Seok Lee, Minah Lee and Chan Beum Park Chem. Commun. 2011, 47, 10227-10229.CrossRefGoogle Scholar
  13. 13.
    Dong Heon Nam, Chan Beum Park ChemBioChem 2012, 13, 1278-1282.CrossRefGoogle Scholar
  14. 14.
    Dong Heon Nam, Sahng Ha Lee, Chan Beum Park Small 2010, 6, 922-926.CrossRefGoogle Scholar
  15. 15.
    Chan Beum Park, Sahng Ha Lee, Esakkiappan Subramanian, Bharat. B. Kale, Sang Mi Lee and Jin-Ook Baeg Chem. Commun. 2008, 5423-5425.Google Scholar
  16. 16.
    Sahng Ha Lee, Hye Jung Lee, Keehoon Won, and Chan Beum Park Chem. Eur. J. 2012, 18, 5490-5495.CrossRefGoogle Scholar
  17. 17.
    Kerstin T. Oppelt, Eva Wöß, Martin Stiftinger, Wolfgang Schöfberger, Wolfgang Buchberger, and Günther Knör Inorg. Chem. 2013, 52, 11910-11922.CrossRefGoogle Scholar
  18. 18.
    Zhongyi Jiang, Chenqiu Lu, Hong Wu Ind. Eng. Chem. Res. 2005, 44, 4165-4170.CrossRefGoogle Scholar
  19. 19.
    Jungki Ryu, Sahng Ha Lee, Dong Heon Nam, Chan Beum Park Adv. Mater. 2011, 23, 1883-1888.CrossRefGoogle Scholar
  20. 20.
    Sahng Ha Lee, Jungki Ryu, Dong Heon Nam, Chan Beum Park Chem. Commun. 2011, 47, 4643-4645.CrossRefGoogle Scholar
  21. 21.
    Jae Hong Kim, Dong Heon Nam, Chan Beum Park Current Opinion in Biotechnology 2014, 28, 1-9.CrossRefGoogle Scholar
  22. 22.
    Joon Seok Lee, Sahng Ha Lee, Jae Hong Kim, Chan Beum Park Lab Chip, 2011, 11, 2309-2311.CrossRefGoogle Scholar
  23. 23.
    Dariusz Mitoraj, Radim Beranek, Horst Kisch Photochem. Photobiol. Sci. 2010, 9, 31-38.CrossRefGoogle Scholar
  24. 24.
    Michal Bledowski, Lidong Wang, Ayyappan Ramakrishnan, Radim Beranek J. Mater. Res. 2013, 28, 411-417.CrossRefGoogle Scholar
  25. 25.
    Jian Liu, Markus Antonietti Energy Environ. Sci. 2013, 6, 1486-1493.CrossRefGoogle Scholar
  26. 26.
    Shrikant S. Bhoware, Ka Young Kim, Jin Ah Kim, Qiong Wu, Jinheung Kim, J. Phys. Chem., C 2011, 115, 2553-2557.CrossRefGoogle Scholar
  27. 27.
    Sumit Choudhury, Jin-Ook Baeg, No-Joong Park, Rajesh K. Yadav Angew. Chem. Int. Ed. 2012, 51, 11624-11628.CrossRefGoogle Scholar
  28. 28.
    Rajesh K. Yadav, Jin-Ook Baeg, Gyu Hwan Oh, No-Joong Park, Ki-jeong Kong, Jinheung Kim, Dong Won Hwang, Soumya K. Biswas J. Am. Chem. Soc. 2012, 134, 11455-11461.CrossRefGoogle Scholar
  29. 29.
    Mark D. Doherty, David C. Grills, James T. Muckerman, Dmitry E. Polyansky, Etsuko Fujita Coord. Chem. Rev. 2010, 254, 2472-2482.CrossRefGoogle Scholar
  30. 30.
    James T. Muckerman, Patrick Achord, Carol Creutz, Dmitry E. Polyansky, Etsuko Fujita PNAS 2012, 109, 15657-15662.CrossRefGoogle Scholar
  31. 31.
    Fumio Kurayama, Tatsushi Matsuyama, Hideo Yamamoto Advanced Powder Technol. 2004, 15, 51-61.CrossRefGoogle Scholar
  32. 32.
    a) Piero Giannoccaro, Ms Thesis, Dept. of Chemistry, University of Bari, 2008; b) Michele Aresta, Angela Dibenedetto, Tomasz Baran, Antonella Angelini, Przemyslaw Labuz, Wojciech Macyk, invited paper, BJOC, 2014; c) Michele Aresta, Angela Dibenedetto, Wojciech Macyk, Tomasz Baran, IT Patent MI20131135.Google Scholar
  33. 33.
    Nguyen T. Van, H. Ti. Tien J. Phys. Chem. 1970, 74, 3559-3568.CrossRefGoogle Scholar
  34. 34.
    Helmut Tributsch, Melvin Calvin Photochem. Photobiol. 1971, 14, 95-112.CrossRefGoogle Scholar
  35. 35.
    Ching W. Tang, Andreas C. Albrecht J. Phys. Chem. 1975, 62, 2139-2149.CrossRefGoogle Scholar
  36. 36.
    Ching W. Tang, Andreas C. Albrecht J. Phys. Chem. 1975, 63, 953-961.CrossRefGoogle Scholar
  37. 37.
    Fujio Takahashi, Ryoichi Kikuchi Biochim. Biophys. Acta-Bioenergetics 1976, 430, 490-500.CrossRefGoogle Scholar
  38. 38.
    Fujio Takahashi, Masuo Aizawa, Ryoichi Kikuchi, Shuichi Suzuki Electrochim. Acta 1977, 22, 289-293.CrossRefGoogle Scholar
  39. 39.
    Alexandre Leonard, Philippe Dandoy, Emeric Danloy, Gregory Leroux, Christophe F. Meunier, Joanna C. Rooke, Bao-Lian Su Chem. Soc. Rev. 2011, 40, 860-885.CrossRefGoogle Scholar
  40. 40.
    Alexandre Leonard, Joanna C. Rooke, Christophe F. Meunier, Hugo Sarmento, Jean-Pierre Descy, Bao-Lian Su Energy Environ. Sci. 2010, 3, 370-377.CrossRefGoogle Scholar
  41. 41.
    Christophe F. Meunier, Philippe Dandoy, Bao-Lian Su Journal of Colloid and Interface Science 2010, 342, 211-224.CrossRefGoogle Scholar
  42. 42.
    Christophe F. Meunier, Joanna C. Rooke, Alexandre Leonard, Pierre Van Cutsem, Bao-Lian Su J. Mater. Chem. 2010, 20, 929-936.CrossRefGoogle Scholar
  43. 43.
    Joanna Claire Rooke, Alexandre Leonard, Hugo Sarmento, Christophe F. Meunier, Jean-Pierre Descy, Bao-Lian Su J. Mater. Chem. 2011, 21, 951-959.CrossRefGoogle Scholar
  44. 44.
    Christophe F. Meunier, Joanna C. Rooke, Alexandre Leonard, Hao Xie, Bao-Lian Su Chem. Commun. 2010, 46, 3843-3859.CrossRefGoogle Scholar
  45. 45.
    Christophe F. Meunier, Pierre Van Cutsem, Young-Uk Kwon, Bao-Lian Su J. Mater. Chem. 2009, 19, 1535-1542.CrossRefGoogle Scholar
  46. 46.
    Joanna Claire Rooke, Alexandre Léonard, Christophe F. Meunier, Hugo Sarmento, Jean-Pierre Descy, Bao-Lian Su Journal of Colloid and Interface Science 2010, 344, 348-352.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michele Aresta
    • 1
    • 2
    Email author
  • Angela Dibenedetto
    • 3
  • Wojciech Macyk
    • 4
  1. 1.Department of Chemical and Biomolecular EngineeringNUSSingaporeSingapore
  2. 2.Interuniversity Consortium on Chemical Reactivity and Catalysis (CIRCC)BariItaly
  3. 3.CIRCC and Department of ChemistryUniversity of BariBariItaly
  4. 4.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations