Resolving Interoperability in Concurrent Engineering

  • Nicolas Figay
  • Catarina Ferreira da Silva
  • Parisa GhodousEmail author
  • Ricardo Jardim-Goncalves


To face an increasingly competitive environment within a globalization context, and to focus on core high-added value business activities, enterprises have to establish partnerships with other companies specialized in complementary domains. Such an approach, primarily based on optimization of the value chain, is called virtualization of the Enterprise. Enterprises relying on virtualization, sub-contracting and outsourcing have to coordinate activities of all the partners, to integrate the results of their activities, to manage federated information coming from the different implied information systems and to re-package them as a product for the clients. The adopted organization, which is considering as well as the internal and external resources, is called “Extended Enterprise”. Nevertheless, in such complex emerging networked organizations, it is more and more challenging to be able to interchange, to share and to manage internal and external resources such as digital information, digital services and computer-enacted processes. In addition, digital artifacts produced by enterprise activities are more and more heterogeneous and complex. After characterizing expected interoperability for collaborative platform systems and highlighting interoperability issues and brakes not yet addressed, this chapter describes an innovative approach to build interoperability based on a Federated Framework of legacy eBusiness standards of a given ecosystem. It implies facing important issues related to semantic preservation along the lifecycle of the artifacts and infrastructures required to define and exploit an application. We present two use case studies that apply interoperability strategies.


Interoperability Enterprise standard Organization network Extended enterprise Enterprise virtualization Federation Servitization 


  1. 1.
    Ford C, Colombi J, Graham S, Jacques D (2008) A survey on interoperability measurement. In: 12th ICCRTS conference adapting C2 to the 21st century, Newport, 19–21 June 2007, CCRP. Accessed 15 May 2014
  2. 2.
    Morris EJ, Levine L, Place PR, Plakosh D, Meyers BC (2004) System of system interoperability. Software Engineering Institute. Accessed 15 May 2014
  3. 3.
    ISO 10303, STEP, AP214, Conformance class 8—recommended practices for the usage of STEP AP214 CC8Google Scholar
  4. 4.
    ISC, International STEP centers. Available at
  5. 5.
    Raman D (1999) XML/EDI cyber assisted business in practice, TIE Holding NVGoogle Scholar
  6. 6.
    Berre A (2002) IDEAS project report, Introduction to ebXML and web servicesGoogle Scholar
  7. 7.
    Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A (2002) Collaborative conceptual design—state of the art and future trends. Comput Aided Des 34:981–996CrossRefGoogle Scholar
  8. 8.
    Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2006) Extensible markup language (XML) 1.0, 4th edn, W3C recommendation 16 Aug 2006Google Scholar
  9. 9.
    Christensen E, Curbera F, Meredith G, Weerawarana S (2001) Web services description language (WSDL) 1.1. W3C Note, 15 Mar 2001Google Scholar
  10. 10.
    Chinnici R, Moreau J J, Ryman A (2007), Web services description language (WSDL) version 2.0 part 1: core language. W3C recommendation, 26 June 2007Google Scholar
  11. 11.
    Haller A, Gomez JM, Bussler C (2005) Exposing semantic web services principles in SOA to solve EAI scenarios. In: WWW 2005 conference, Chiba, JapanGoogle Scholar
  12. 12.
    Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220CrossRefGoogle Scholar
  13. 13.
    Beckett D (2004) RDF/XML syntax specification (revised). W3C recommendation, 10 Feb 2004Google Scholar
  14. 14.
    Brickley D, Guha RV (2004) RDF vocabulary description language 1.0: RDF schema. W3C recommendation, 10 Feb 2004Google Scholar
  15. 15.
    McGuinness DL, Van Harmelen F (2004) OWL web ontology language overview. W3C Recommendation, 10 Feb 2004Google Scholar
  16. 16.
    Horrocks I, Parsia B, Sattler U (2009) OWL 2 web ontology language: direct semantics. W3C working draft, 21 Apr 2009Google Scholar
  17. 17.
    Baader F, Calvanese D, McGuinness D (2003) The description logic handbook; theory, implementation, and applications. Cambridge University Press, Cambridge, MAGoogle Scholar
  18. 18.
    Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIlraith S, Narayanan S, Paolucci M, Parsia B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S: semantic markup for web services. W3C Member Submission, 22 Nov 2004Google Scholar
  19. 19.
    Martin D, Hodgson R, Horrocks I, Yendluri P (2006) OWL 1.1 web ontology language. Submission Request to W3CGoogle Scholar
  20. 20.
    De Bruijn J, Keller U, Kifer M, Lausen H, Krummenacher R, Polleres A, Predoiu L (2005) Web service modeling language (WSML). W3C member submission, 3 June 2005Google Scholar
  21. 21.
    Farrell J, Lausen H (2007) Semantic annotations for WSDL and XML schemaGoogle Scholar
  22. 22.
    SAWSDL W3C Committee, 2007, SAWSDL (Semantic annotations for WSDL and XML schema). Available at
  23. 23.
    Verma K, Li K, Brewer D (2005) Lumina—semantic web service discovery. Available at
  24. 24.
    METEOR-S, (2007) METEOR-S download and release page. Radiant: WSDL-S/SAWSDL annotation tool. Available at
  25. 25.
    Patil AA, Oundhakar SA, Sheth AP, Verma K, Kunal V (2004) Meteor-S web service annotation framework. In: Proceedings of the 13th conference on World Wide Web WWW 04. ACM Press, New York, p 553Google Scholar
  26. 26.
    Sheth AP, Gomadam K, Ranabahu A (2008) Semantics enhanced services: METEOR-S, SAWSDL and SA-REST. IEEE Data Eng Bull 31(3):8–12Google Scholar
  27. 27.
    Lausen H, De Bruijn J, Polleres A, Fensel D (2005) WSML—a language framework for semantic web services. In: Proceedings of the W3C workshop on rule languages for interoperability, Washington DC., Accessed 15 May 2014
  28. 28.
    Klusch M (2008) Semantic web service coordination. Intell Serv Coord Semant Web pp 59–104Google Scholar
  29. 29.
    Haller A, Gomez J M, Bussler C (2005) Exposing semantic web service principles in SOA to solve EAI scenarios. In: WWW 2005 conference, Chiba, JapanGoogle Scholar
  30. 30.
    Zaremba M, Oren E (2005) WSMX execution semantics, WSMX working draft D13.2 v0.2Google Scholar
  31. 31.
    Dimitrov M, Simov A, Momtchev V, Konstantinov M (2007) WSMO studio—a semantic web services modelling environment for WSMO (system description). In: 4th European semantic web conference, vol 4519. Springer, Berlin, pp 749–758Google Scholar
  32. 32.
    Super Project (2009) Semantic web servicesGoogle Scholar
  33. 33.
    Klusch M (2008) Semantic web service description. Intell Serv Coord Semant Web pp 31–57Google Scholar
  34. 34.
    Burstein M, Ankolenkar A, Paolucci M (2003) DAML-S: semantic markup for web services, The DAML services coalitionGoogle Scholar
  35. 35.
    Knublauch H, Hendler J A, Idehen K (2011) SPIN—overview and motivation. Available at
  36. 36.
    Scicluna J, Abela C, Montebello M (2004) Visual modelling of OWL-S services. In: IADIS international conference WWW/Internet, Madrid, SpainGoogle Scholar
  37. 37.
    Giampapa J, Paolucci M, Srinivasan N, Vaculin R, Group S (2008) OWL-S 1.1 API. Available at
  38. 38.
    Paolucci M, Kawamura T, Payne T, Sycara K (2002) Semantic matching of web services capabilities, In: The semantic web—ISWC 2002, vol 2342/2002, pp 333–347Google Scholar
  39. 39.
    Jaeger M C, Rojec-Goldmann G, Liebetruth C, Mühl G, Geihs K (2005) Ranked matching for service descriptions using OWL-S. In: Kommunikation in Verteilten Systemen 2005 (KiVS 2005), pp 91–102Google Scholar
  40. 40.
    Klusch M, Fries B, Sycara K (2009) OWLS-MX: a hybrid semantic web service matchmaker for OWL-S services. Web Semant Sci Serv 7(2):121–133CrossRefGoogle Scholar
  41. 41.
    Klusch M, Fries B (2008) Hybrid OWL-S service retrieval with OWLS-MX: benefits and pitfalls, In: di Noia T et al. (eds) Proceedings of the workshop on service matchmaking and resource retrieval in the semantic web (SMR2-2007), Busan, South Korea, 11 Nov 2007, p 15. Accessed 15 May 2014
  42. 42.
    Cabral L, Domingue J (2009) Translating semantic web service based business process models. In: 2009 IEEE Asia Pacific services computing conference APSCC, pp 1–6Google Scholar
  43. 43.
    Cardoso J, Barros A, May N, Kylau U (2010) Towards a unified service description language for the internet of services: requirements and first developments, vol 24 IEEE, pp 602–609Google Scholar
  44. 44.
    Pedrinaci C, Domingue J (2010) Toward the next wave of services: linked services for the web of data. J Univers Comput Sci 16(3):1694–1719Google Scholar
  45. 45.
    Pedrinaci C, Cardoso J, Leidig T (2014) Linked USDL: a vocabulary for web-scale service trading. In: 11th extended semantic web conference (ESWC 2014). Springer, Berlin, Accessed 15 July 2014
  46. 46.
    Josuttis NM (2007) SOA in practice, vol 253. O’Reilly, Sebastopol, p 352Google Scholar
  47. 47.
    ISO/IEC JTC-1 (ISO) (1993) ISO/IEC-2382-01: information technology—vocabulary—part 1: fundamental termsGoogle Scholar
  48. 48.
    IDABC (2004) European interoperability framework for pan-european egovernment servicesGoogle Scholar
  49. 49.
    Fensel D, Bussler C (2002) The web service modeling framework WSMF. Electron Commer Res Appl 1:113–137CrossRefGoogle Scholar
  50. 50.
    Bouras A, Gouvas P, Kourtesis D, Mentzas G (2007) Semantic integration of business applications across collaborative value networks. In: Camarinha-Matos LM et al (eds) Establishing the foundation of collaborative networks. Springer, New York, pp 539–546Google Scholar
  51. 51.
    Izza S, Vincent L, Burlat P (2006) A framework for semantic enterprise integration. In: Interoperability of enterprise software and applications. vol 5, section 2. Springer, London, pp 75–86Google Scholar
  52. 52.
    Ferreira da Silva C, Cunha PR, Ghodous P, Melo P (2010) The semantic side of service-oriented architectures. In: Mentzas G, Friesen A (eds) Semantic enterprise application integration for business processes service oriented frameworks. IGI Global, Hershey, New York, pp 90–104Google Scholar
  53. 53.
    Kalfoglou Y, Schorlemmer M (2003) Ontology mapping: the state of the art. Knowl Eng Rev J 18(1):1–31CrossRefGoogle Scholar
  54. 54.
    Bouquet P, Serafini L, Zanobini S, Sceffer S (2006) Bootstrapping semantics on the web. In: Proceedings of the 15th international conference on World Wide Web—WWW’06. ACM, New York, pp 505Google Scholar
  55. 55.
    Klusch M, Fries B, Sycara K (2006) Automated semantic web service discovery with OWLS-MX. In: Proceedings of the 5th international joint conference on autonomous agents and multi-agent systems. ACM New York, pp 915–922Google Scholar
  56. 56.
    Kiefer C, Bernstein A (2008) The creation and evaluation of iSPARQL strategies for matchmaking. In: Bechhofer S et al (eds) Proceedings of the 5th European semantic web conference on the semantic web: research and applications. Springer, Berlin, pp 463–477Google Scholar
  57. 57.
    Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. Web Semant 5(2):51–53CrossRefGoogle Scholar
  58. 58.
    Li L, Horrocks I (2004) A software framework for matchmaking based on semantic web technology. Int J Electron Commer 8(4):39–60Google Scholar
  59. 59.
    Klusch M, Kapahnke P (2012) The iSeM matchmaker: a flexible approach for adaptive hybrid semantic service selection, web semant. Sci Serv Agents World Wide Web 15:1–14CrossRefGoogle Scholar
  60. 60.
    Klusch M (2012) Overview of the S3 contest: performance evaluation of semantic service matchmakers. In: Blake B et al (eds) Semantic web services SE—2. Springer, Berlin, pp 17–34Google Scholar
  61. 61.
    Naeem M, Heckel R, Orejas F, Hermann F (2010) Incremental service composition based on partial matching of visual contracts, In: Rosenblum DS, Taenzer G (eds) Fundamental approaches to software engineering. Proceedings of the 13th international conference FASE 2010. Springer, Berlin, pp 123–138Google Scholar
  62. 62.
    Anastasiou M, Berre A-J, Elvesæter B, Figay N, Garcia O, Greiner U (2010) ATHENA interoperability framework AIF, European integrated project, 2010. Available at
  63. 63.
    Figay N (2009) Interoperability of technical enterprise applications, Thesis report. Accessed 10 July 2014
  64. 64.
    NN (2011) IMAGINE Research & Development project. Accessed 10 July 2014
  65. 65.
    Benfenatki H, Saouli H, Benharkat N, Ghodous P, Kazar O, Amghar Y (2013) Cloud automatic software development. In: Bil C et al (eds) Proceedings of 20th ISPE international conference on concurrent engineering. IOS Press, Amsterdam, pp 40–49Google Scholar
  66. 66.
    Benfenatki H, Kemp G, Ferreira Da Silva C, Benharkat AN, Ghodous P (2014) Service-oriented architecture for cloud application development. In: Cha J et al. (eds.) Moving integrated product development to service clouds in global economy. Proceedings of the 21st ISPE Inc. international conference on concurrent engineering. IOS Press, Amsterdam, pp 307–316Google Scholar
  67. 67.
    Product Data Management Enablers v1.3, Object Management Group, November 2000. Available at
  68. 68.
    PDTnet Project—Product data technology and communication in an OEM and supplier network, ProSTEP Ivip, 2000. Available at
  69. 69.
    Product Lifecycle Management Services, v2.1, Object Management Group, May 2011. Available at
  70. 70.
    PLCS Web Service v2, VIVACE, 2005. Available at
  71. 71.
    Ottino A, Ghodous P, Ladjal H, Shariat B, Figay N (2014) Interoperability of simulation applications for dynamic network enterprises based on cloud computing—aeronautics application. In: Cha J et al. (eds) Moving integrated product development to service clouds in global economy. Proceedings of the 21st ISPE Inc. international conference on concurrent engineering. IOS Press, Amsterdam, pp 597–606Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicolas Figay
    • 1
  • Catarina Ferreira da Silva
    • 2
  • Parisa Ghodous
    • 2
    Email author
  • Ricardo Jardim-Goncalves
    • 3
  1. 1.EADSSuresnesFrance
  2. 2.LIRIS, UMR5205University of Lyon 1, CNRSVilleurbanneFrance
  3. 3.New University of LisbonUninovaLisbonPortugal

Personalised recommendations