Obtaining an ACL2 Specification from an Isabelle/HOL Theory

  • Jesús Aransay-Azofra
  • Jose Divasón
  • Jónathan Heras
  • Laureano Lambán
  • María Vico Pascual
  • Ángel Luis Rubio
  • Julio Rubio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8884)


In this work, we present an interoperability framework that enables the translation of specifications (signature of functions and lemma statements) among different theorem provers. This translation is based on a new intermediate XML language, called XLL, and is performed almost automatically. As a case study, we focus on porting developments from Isabelle/HOL to ACL2. In particular, we study the transformation to ACL2 of an Isabelle/HOL theory devoted to verify an algorithm computing a diagonal form of an integer matrix (looking for the ACL2 executability that is missed in Isabelle/HOL). Moreover, we provide a formal proof of a fragment of the obtained ACL2 specification — this shows the suitability of our approach to reuse in ACL2 a proof strategy imported from Isabelle/HOL.


Type Class Proof Assistant Proof Scheme Integer Matrix Type Annotation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ForMath: Formalisation of Mathematics, European project, http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
  2. 2.
  3. 3.
    Aransay, J., et al.: A report on an experiment in porting formal theories from Isabelle/HOL to Ecore and ACL2. Technical report, ForMath European project (2013), http://wiki.portal.chalmers.se/cse/uploads/ForMath/isabelle_acl2_report
  4. 4.
    Benzmüller, C.E., Rabe, F., Sutcliffe, G.: THF0 – The Core of the TPTP Language for Higher-Order Logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bradley, G.H.: Algorithms for Hermite and Smith Normal Matrices and Linear Diophantine Equations. Mathematics of Computation 25(116), 897–907 (1971)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F., Sojakova, K.: Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In: Mossakowski, T., Kreowski, H.-J. (eds.) WADT 2010. LNCS, vol. 7137, pp. 139–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Springer (1995)Google Scholar
  8. 8.
    Cormen, T.H., et al.: Introduction to Algorithms. McGraw-Hill (2003)Google Scholar
  9. 9.
    Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 275–294. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Denney, E.: A Prototype Proof Translator from HOL to Coq. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Gonthier, G., Mahboubi, A.: An introduction to Small Scale Reflection in Coq. Journal of Formalized Reasoning 3(2), 95–152 (2010)MATHMathSciNetGoogle Scholar
  12. 12.
    Gordon, M.J.C., et al.: The Right Tools for the Job: Correctness of Cone of Influence Reduction Proved Using ACL2 and HOL4. Journal of Automated Reasoning 47(1), 1–16 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hendrix, J.: Matrices in ACL2. In: ACL2 2003 (2003)Google Scholar
  14. 14.
    Heras, J., Mata, G., Romero, A., Rubio, J., Sáenz, R.: Verifying a plaftorm for digital imaging: A multi-tool strategy. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 66–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Verifying B Proof Rules Using Deep Embedding and Automated Theorem Proving. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 253–268. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kaufmann, M., et al.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers (2000)Google Scholar
  17. 17.
    Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Naumov, P., Stehr, M.-O., Meseguer, J.: The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability). In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 329–345. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  20. 20.
    Obua, S., Nipkow, T.: Flyspeck II: the basic linear programs. Annals of Mathematics and Artificial Intelligence 56(3-4), 245–272 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Obua, S., Skalberg, S.: Importing HOL into isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Sexton, A.P., et al.: Computing with Abstract Matrix Structures. In: ISSAC 2009, pp. 325–332. ACM (2009)Google Scholar
  23. 23.
    Siekmann, J.H., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Horacek, H., Kohlhase, M., Meier, A., Melis, E., Moschner, M., Normann, I., Pollet, M., Sorge, V., Ullrich, C., Wirth, C.-P.: Proof Development with ΩMEGA. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 144–149. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Steele, G.L.: Common Lisp the Language. Digital Press (1990)Google Scholar
  25. 25.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jesús Aransay-Azofra
    • 1
  • Jose Divasón
    • 1
  • Jónathan Heras
    • 1
  • Laureano Lambán
    • 1
  • María Vico Pascual
    • 1
  • Ángel Luis Rubio
    • 1
  • Julio Rubio
    • 1
  1. 1.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaSpain

Personalised recommendations