Multivalued Elementary Functions in Computer-Algebra Systems

  • David J. Jeffrey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8884)

Abstract

An implementation (in Maple) of the multivalued elementary inverse functions is described. The new approach addresses the difference between the single-valued inverse function defined by computer systems and the multivalued function which represents the multiple solutions of the defining equation. The implementation takes an idea from complex analysis, namely the branch of an inverse function, and defines an index for each branch. The branch index then becomes an additional argument to the (new) function. A benefit of the new approach is that it helps with the general problem of correctly simplifying expressions containing multivalued functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.J.: Handbook of Mathematical Functions. Dover (1965)Google Scholar
  2. 2.
    Bradford, R.J., Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: Reasoning about the elementary functions of complex analysis. Annals of Mathematics and Artificial Intelligence 36, 303–318 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bronshtein, I.N., Semendyayev, K.A., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn. Springer, Heidelberg (2007)MATHGoogle Scholar
  4. 4.
    Carathéodory, C.: Theory of functions of a complex variable, 2nd edn. Chelsea, New York (1958)Google Scholar
  5. 5.
    Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: According to Abramowitz and Stegun. SIGSAM Bulletin 34, 58–65 (2000)CrossRefGoogle Scholar
  6. 6.
    Corless, R.M., Jeffrey, D.J.: The unwinding number. Sigsam Bulletin 30(2), 28–35 (1996)CrossRefGoogle Scholar
  7. 7.
    Corless, R.M., Jeffrey, D.J.: Elementary Riemann surfaces. Sigsam Bulletin 32(1), 11–17 (1998)CrossRefGoogle Scholar
  8. 8.
    Davenport, J.H.: The challenges of multivalued “functions”. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Gullberg, J.: Mathematics: From the Birth of Numbers. W. W. Norton & Company, New York (1997)MATHGoogle Scholar
  10. 10.
    Jeffrey, D.J.: The importance of being continuous. Mathematics Magazine 67, 294–300 (1994)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the Lambert W function. Mathematical Scientist 21, 1–7 (1996)MATHMathSciNetGoogle Scholar
  12. 12.
    Jeffrey, D.J., Rich, A.D.: The evaluation of trigonometric integrals avoiding spurious discontinuities. ACM Trans. Math. Software 20, 124–135 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jeffrey, D.J., Norman, A.C.: Not seeing the roots for the branches. SIGSAM Bulletin 38(3), 57–66 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lawden, D.F.: Elliptic functions and applications. Springer (1989)Google Scholar
  15. 15.
    Lozier, D.W., Olver, F.W.J., Boisvert, R.F.: NIST Handbook of Mathematical Functions. Cambridge University Press (2010)Google Scholar
  16. 16.
    Michael Trott. Visualization of Riemann surfaces of algebraic functions. Mathematica in Education and Research, 6:15–36, 1997.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David J. Jeffrey
    • 1
  1. 1.Department of Applied MathematicsUniversity of Western OntarioCanada

Personalised recommendations