A Distance-Based Decision in the Credal Level

  • Amira Essaid
  • Arnaud Martin
  • Grégory Smits
  • Boutheina Ben Yaghlane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8884)

Abstract

Belief function theory provides a flexible way to combine information provided by different sources. This combination is usually followed by a decision making which can be handled by a range of decision rules. Some rules help to choose the most likely hypothesis. Others allow that a decision is made on a set of hypotheses. In [6], we proposed a decision rule based on a distance measure. First, in this paper, we aim to demonstrate that our proposed decision rule is a particular case of the rule proposed in [4]. Second, we give experiments showing that our rule is able to decide on a set of hypotheses. Some experiments are handled on a set of mass functions generated randomly, others on real databases.

Keywords

belief function theory imprecise decision distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appriou, A.: Approche générique de la gestion de l’incertain dans les processus de fusion multisenseur. Traitement du Signal 22, 307–319 (2005)MATHGoogle Scholar
  2. 2.
    Dempster, A.P.: Upper and Lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer Theory. IEEE Transactions on Systems, Man, and Cybernetics 25(5), 804–813 (1995)CrossRefGoogle Scholar
  4. 4.
    Denoeux, T.: Analysis of evidence-theoric decision rules for pattern classification. Pattern Recognition 30(7), 1095–1107 (1997)CrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence 4, 244–264 (1988)CrossRefGoogle Scholar
  6. 6.
    Essaid, A., Martin, A., Smits, G., Ben Yaghlane, B.: Uncertainty in ontology matching: a decision rule based approach. In: Proceeding of the International Conference on Information Processing and Mangement Uncertainty, pp. 46–55 (2014)Google Scholar
  7. 7.
    Jousselme, A.L., Grenier, D., Bossé, E.: A New Distance Between Two Bodies of Evidence. Information Fusion 2, 91–101 (2001)CrossRefGoogle Scholar
  8. 8.
    Martin, A., Quidu, I.: Decision support with belief functions theory for seabed characterization. In: Proceeding of the International Conference on Information Fusion, pp. 1–8 (2008)Google Scholar
  9. 9.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)Google Scholar
  10. 10.
    Smets, P.: The Combination of Evidence in the Transferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)CrossRefGoogle Scholar
  11. 11.
    Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9(1), 1–35 (1993)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligent 66, 191–234 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Yager, R.R.: On the Dempster-Shafer framework and new combination rules. Information Sciences 41, 93–137 (1987)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amira Essaid
    • 1
    • 2
  • Arnaud Martin
    • 2
  • Grégory Smits
    • 2
  • Boutheina Ben Yaghlane
    • 3
  1. 1.ISG TunisLARODEC, University of TunisTunisia
  2. 2.IRISAUniversity of Rennes1LannionFrance
  3. 3.IHEC CarthageLARODEC, University of CarthageTunisia

Personalised recommendations