Detecting Symmetry in Cellular Automata Generated Patterns Using Swarm Intelligence

  • Mohammad Ali Javaheri Javid
  • Mohammad Majid al-Rifaie
  • Robert Zimmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8890)

Abstract

Since the introduction of cellular automata in the late 1940’s they have been used to address various types of problems in computer science and other multidisciplinary fields. Their generative capabilities have been used for simulating and modelling various natural, physical and chemical phenomena. Besides these applications, the lattice grid of cellular automata has been providing a by-product interface to generate graphical patterns for digital art creation. One important aspect of cellular automata is symmetry, detecting of which is often a difficult task and computationally expensive. In this paper a swarm intelligence algorithm – Stochastic Diffusion Search – is proposed as a tool to identify axes of symmetry in the cellular automata generated patterns.

Keywords

Cellular automata swarm intelligence symmetry aesthetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    al-Rifaie, M.M., Bishop, M.: Stochastic diffusion search review. Paladyn, Journal of Behavioral Robotics 4(3), 155–173 (2013)Google Scholar
  2. 2.
    al-Rifaie, M.M., Bishop, M., Blackwell, T.: Information sharing impact of stochastic diffusion search on differential evolution algorithm. J. Memetic Computing 4(4), 327–338 (2012)Google Scholar
  3. 3.
    al-Rifaie, M.M., Bishop, M., Caines, S.: Creativity and autonomy in swarm intelligence systems. J. Cognitive Computation 4(3), 320–331 (2012)CrossRefGoogle Scholar
  4. 4.
    Bauerly, M., Liu, Y.: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics. International Journal of Man-Machine Studies 64(8), 670–682 (2006)Google Scholar
  5. 5.
    Behrens, R.R.: Design in the visual arts. Prentice-Hall (1984)Google Scholar
  6. 6.
    Bishop, J.: Stochastic searching networks. In: Proc. 1st IEE Conf. on Artificial Neural Networks, pp. 329–331. IET, London (1989)Google Scholar
  7. 7.
    Bishop, J., Torr, P.: The stochastic search network. In: Neural Networks for Images, Speech and Natural Language, pp. 370–387. Chapman & Hall, New York (1992)CrossRefGoogle Scholar
  8. 8.
    Carroll, M.J. (ed.): HCI Models, Theories, and Frameworks: Toward a multidisciplinary science. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  9. 9.
    Dawkins, R.: The blind watchmaker. New York: Norton & Company, Inc. (1986)Google Scholar
  10. 10.
    Gangestad, S.W., Thornhill, R., Yeo, R.A.: Facial attractiveness, developmental stability, and fluctuating asymmetry. Ethology and Sociobiology 15(2), 73–85 (1994)CrossRefGoogle Scholar
  11. 11.
    Hinton, G.F.: A parallel computation that assigns canonical object-based frames of reference. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 683–685. Morgan Kaufmann Publishers Inc. (1981)Google Scholar
  12. 12.
    Javid, M.A.J., te Boekhorst, R.: Cell Dormancy in Cellular Automata. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 367–374. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Jiang, H., Ngo, C.W., Tan, H.K.: Gestalt-based feature similarity measure in trademark database. Pattern Recognition 39(5), 988–1001 (2006)CrossRefGoogle Scholar
  14. 14.
    Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 3–37. Springer (2008)Google Scholar
  15. 15.
    Leyton, M.: Symmetry, causality, mind. Bradford Books, MIT Press (1992)Google Scholar
  16. 16.
    Liu, Y.: Computational symmetry. In: CMU Robotics Institute (2000)Google Scholar
  17. 17.
    McClelland, J.L., Rumelhart, D.E., Group, P.R., et al.: Parallel distributed processing. Explorations in the Microstructure of Cognition 2 (1986)Google Scholar
  18. 18.
    McCormack, J.: Interactive evolution of l-system grammars for computer graphics modelling. Complex Systems: from biology to computation, 118–130 (1993)Google Scholar
  19. 19.
    de-Meyer, K., Bishop, J.M., Nasuto, S.J.: Stochastic diffusion: Using recruitment for search. In: McOwan, P., Dautenhahn, K., Nehaniv, C.L. (eds.) Evolvability and interaction: evolutionary substrates of communication, signalling, and perception in the dynamics of social complexity, Technical Report 393, vol. 393, pp. 60–65 (2003)Google Scholar
  20. 20.
    Møller, A.P., Cuervo, J.J.: Asymmetry, size and sexual selection: meta-analysis, publication bias and factors affecting variation in relationships, p. 1. Oxford University Press (1999)Google Scholar
  21. 21.
    Møller, A.P., Thornhill, R.: Bilateral symmetry and sexual selection: a meta-analysis. Am. Nat. 151(2), 174–192 (1998)CrossRefGoogle Scholar
  22. 22.
    Nowak, M.A.: Evolutionary dynamics: exploring the equations of life. Harvard University Press (2006)Google Scholar
  23. 23.
    Park, I.K., Lee, K.M., Lee, S.U.: Perceptual grouping of line features in 3-D space: A model-based framework. Pattern Recognition 37(1), 145–159 (2004)MATHCrossRefGoogle Scholar
  24. 24.
    Railton, P.: Aesthetic Value, Moral Value and the Ambitions of Naturalism. In: Aesthetics and Ethics, vol. 3, University of Maryland (2001)Google Scholar
  25. 25.
    Randy, T., Steven, G.: Human facial beauty. Human Nature 4, 237–269 (1993)CrossRefGoogle Scholar
  26. 26.
    Roth, T.O., Deutsch, A.: Universal synthesizer and window: Cellular automata as a new kind of cybernetic image. In: Imagery in the 21st Century, pp. 269–288. The MIT Press (2011)Google Scholar
  27. 27.
    Rucker, R.: Seek!: Selected Nonfiction. Running Press Book Publishers (1999)Google Scholar
  28. 28.
    Shackelford, T.K., Larsen, R.J.: Facial symmetry as an indicator of psychological emotional and physiological distress. Journal of Personality and Social Psychology 72 (1997)Google Scholar
  29. 29.
    Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (1994)Google Scholar
  30. 30.
    Todd, S., Latham, W., Hughes, P.: Computer sculpture design and animation. The Journal of Visualization and Computer Animation 2(3), 98–105 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohammad Ali Javaheri Javid
    • 1
  • Mohammad Majid al-Rifaie
    • 1
  • Robert Zimmer
    • 1
  1. 1.Department of ComputingGoldsmiths, University of LondonLondonUK

Personalised recommendations