A Comparative Evaluation of Regression Learning Algorithms for Facial Age Estimation

  • Carles Fernández
  • Ivan HuertaEmail author
  • Andrea Prati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8912)


The problem of automatic age estimation from facial images poses a great number of challenges: uncontrollable environment, insufficient and incomplete training data, strong person-specificity, and high within-range variance, among others. These difficulties have made researchers of the field propose complex and strongly hand-crafted descriptors, which make it difficult to replicate and compare the validity of posterior classification and regression schemes. We present a practical evaluation of four machine learning regression techniques from some of the most representative families in age estimation: kernel techniques, ensemble learning, neural networks, and projection algorithms. Additionally, we propose the use of simple HOG descriptors for robust age estimation, which achieve comparable performance to the state-of-the-art, without requiring piecewise facial alignment through tens of landmarks, nor fine-tuned and specific modeling of facial aging, nor additional demographic annotations such as gender or ethnicity. By using HOG descriptors, we discuss the benefits and drawbacks among the four learning algorithms. The accuracy and generalization of each regression technique is evaluated through cross-validation and cross-database validation over two large databases, MORPH and FRGC.


Age estimation Support Vector Regression SVM Random Forest Multilayer Neural Networks Regularized Canonical Correlation Analysis CCA HOG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, K.-Y., Chen, C.-S., Hung, Y.-P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: CVPR, pp. 585–592. IEEE (2011)Google Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  3. 3.
    Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: A survey. TPAMI 32(11), 1955–1976 (2010)Google Scholar
  4. 4.
    Geng, X., Yin, C., Zhou, Z.-H.: Facial age estimation by learning from label distributions. TPAMI 35, 2401–2412 (2013)Google Scholar
  5. 5.
    Geng, X., Zhou, Z.-H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. TPAMI 29(12), 2234–2240 (2007)CrossRefGoogle Scholar
  6. 6.
    Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: CVPR, pp. 657–664. IEEE (2011)Google Scholar
  7. 7.
    Guo, G., Mu, G.: Joint estimation of age, gender and ethnicity: CCA vs. PLS. In: 10th Int. Conf. on Automatic Face and Gesture Recognition. IEEE (2013)Google Scholar
  8. 8.
    Han, H., Otto, C., Jain, A.K.: Age estimation from face images: Human vs. machine performance. In: International Conference on Biometrics (ICB). IEEE (2013)Google Scholar
  9. 9.
    Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. TSMC-B 34(1), 621–628 (2004)Google Scholar
  10. 10.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. TPAMI 24(4), 442–455 (2002)Google Scholar
  11. 11.
    Minear, M., Park, D.C.: A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers 36(4), 630–633 (2004)Google Scholar
  12. 12.
    Montillo, A., Ling, H.: Age regression from faces using random forests. In: ICIP, pp. 2465–2468. IEEE (2009)Google Scholar
  13. 13.
    Mu, G., Guo, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: CVPR, pp. 112–119. IEEE (2009)Google Scholar
  14. 14.
    Oro, D., Fernández, C., Saeta, R.J., Martorell, X., Hernando, J.: Real-time GPU-based face detection in HD video sequences. In: ICCV Workshops, pp. 530–537 (2011)Google Scholar
  15. 15.
    Jonathon Phillips, P., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang,, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: CVPR, pp. 947–954. IEEE (2005)Google Scholar
  16. 16.
    Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: Automatic Face and Gesture Recognition, pp. 341–345 (2006)Google Scholar
  17. 17.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature neuroscience 2(11), 1019–1025 (1999)CrossRefGoogle Scholar
  18. 18.
    Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: CVPR, pp. 3476–3483. IEEE (2013)Google Scholar
  19. 19.
    Weng, R., Jiwen, L., Yang, G., Tan, Y.-P.: Multi-feature ordinal ranking for facial age estimation. In: AFGR. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Herta SecurityBarcelonaSpain
  2. 2.DPDCEUniversity IUAVVeniceItaly

Personalised recommendations