International Conference on Social Informatics

SocInfo 2014: Social Informatics pp 384-395 | Cite as

Utilizing Microblog Data in a Topic Modelling Framework for Scientific Articles’ Recommendation

  • Arjumand Younus
  • Muhammad Atif Qureshi
  • Pikakshi Manchanda
  • Colm O’Riordan
  • Gabriella Pasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8851)


Researchers are actively turning to Twitter in an attempt to network with other researchers, and stay updated with respect to various scientific breakthroughs. Young and novice researchers have also found Twitter as a valuable source of information in terms of staying up-to-date with various developments in their field of research. In this paper, we present an approach to utilize this valuable information source within a topic modeling framework to suggest scientific articles of interest to novice researchers. The approach in addition to producing effective recommendations for scientific articles alleviates the cold-start problem and is a step towards elimination of the gap between Twitter and science.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, D., Chen, B.-C.: flda: Matrix factorization through latent dirichlet allocation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 91–100. ACM, New York (2010)Google Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Bollacker, K.D., Lawrence, S., Giles, C.L.: Discovering relevant scientific literature on the web. IEEE Intelligent Systems and their Applications 15(2), 42–47 (2000)CrossRefGoogle Scholar
  4. 4.
    Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., Yu, Y.: Collaborative personalized tweet recommendation. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 661–670. ACM, New York (2012)Google Scholar
  5. 5.
    Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with google’s pagerank algorithm. Journal of Informetrics 1(1), 8–15 (2007)CrossRefGoogle Scholar
  6. 6.
    Ekstrand, M.D., Kannan, P., Stemper, J.A., Butler, J.T., Konstan, J.A., Riedl, J.T.: Automatically building research reading lists. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 159–166. ACM, New York (2010)Google Scholar
  7. 7.
    El-Arini, K., Guestrin, C.: Beyond keyword search: Discovering relevant scientific literature. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 439–447. ACM, New York (2011)Google Scholar
  8. 8.
    Eysenbach, G.: Can tweets predict citations? metrics of social impact based on twitter and correlation with traditional metrics of scientific impact. Journal of Medical Internet Research 13(4) (2011)CrossRefGoogle Scholar
  9. 9.
    Hadgu, A.T., Jäschke, R.: Identifying and analyzing researchers on twitter. In: Proceedings of the 2014 ACM Conference on Web Science, WebSci 2014, pp. 23–32. ACM, New York (2014)Google Scholar
  10. 10.
    Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 199–206. ACM, New York (2010)Google Scholar
  11. 11.
    Hannon, J., McCarthy, K., Smyth, B.: Finding useful users on twitter: Twittomender the followee recommender. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 784–787. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Huang, S., Wan, X.: AKMiner: Domain-specific knowledge graph mining from academic literatures. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II. LNCS, vol. 8181, pp. 241–255. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow text features. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 441–450. ACM (2010)Google Scholar
  14. 14.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600. ACM, New York (2010)Google Scholar
  15. 15.
    Letierce, J., Passant, A., Breslin, J., Decker, S.: Understanding how Twitter is used to widely spread Scientific Messages. In: Proceedings of the WebSci10: Extending the Frontiers of Society On-Line (March 2010)Google Scholar
  16. 16.
    Letierce, J., Passant, A., Breslin, J.G., Decker, S.: Using twitter during an academic conference: The #iswc2009 use-case. In: ICWSM (2010)Google Scholar
  17. 17.
    McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J.A., Riedl, J.: On the recommending of citations for research papers. In: Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, CSCW 2002, pp. 116–125. ACM, New York (2002)Google Scholar
  18. 18.
    Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 385–388 (2009)Google Scholar
  19. 19.
    Priem, J., Hemminger, B.H.: Scientometrics 2.0: New metrics of scholarly impact on the social web. First Monday 15(7) (2010)Google Scholar
  20. 20.
    Tang, Y.: The design and study of pedagogical paper recommendation (2008)Google Scholar
  21. 21.
    Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 448–456. ACM, New York (2011)Google Scholar
  22. 22.
    Weller, K., Dröge, E., Puschmann, C.: Citation analysis in twitter: Approaches for defining and measuring information flows within tweets during scientific conferences. In: MSM, pp. 1–12 (2011)Google Scholar
  23. 23.
    Woodruff, A., Gossweiler, R., Pitkow, J., Chi, E.H., Card, S.K.: Enhancing a digital book with a reading recommender. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2000, pp. 153–160. ACM, New York (2000)Google Scholar
  24. 24.
    Yang, C., Wei, B., Wu, J., Zhang, Y., Zhang, L.: Cares: A ranking-oriented cadal recommender system. In: Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2009, pp. 203–212. ACM, New York (2009)CrossRefGoogle Scholar
  25. 25.
    Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Proceedings of the 33rd European Conference on Advances in Information Retrieval, ECIR 2011, pp. 338–349. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Arjumand Younus
    • 1
    • 2
  • Muhammad Atif Qureshi
    • 1
    • 2
  • Pikakshi Manchanda
    • 2
  • Colm O’Riordan
    • 1
  • Gabriella Pasi
    • 2
  1. 1.Computational Intelligence Research Group, Information TechnologyNational University of IrelandGalwayIreland
  2. 2.Information Retrieval Lab, Informatics, Systems and CommunicationUniversity of Milan BicoccaMilanItaly

Personalised recommendations