Advertisement

Molecular Mechanisms of IgE Class Switch Recombination

  • Pei Tong
  • Duane R. Wesemann
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 388)

Abstract

Immunoglobulin (Ig) E is the most tightly regulated of all Ig heavy chain (IgH) isotypes and plays a key role in atopic disease. The gene encoding for IgH in mature B cells consists of a variable region exon—assembled from component gene segments via V(D)J recombination during early B cell development—upstream of a set of IgH constant region CH exons. Upon activation by antigen in peripheral lymphoid organs, B cells can undergo IgH class switch recombination (CSR), a process in which the initially expressed IgH μ constant region exons (Cμ) are deleted and replaced by one of several sets of downstream CH exons (e.g., Cγ, Cε, and Cα). Activation of the IL-4 receptor on B cells, together with other signals, can lead to the replacement of Cμ with Cε resulting in CSR to IgE through a series of molecular events involving irreversible remodeling of the IgH locus. Here, we discuss the molecular mechanisms of CSR and the unique features surrounding the generation of IgE-producing B cells.

Keywords

Region Exon Class Switch Recombination Active Histone Modification Vertebrate Telomere Sequence Constant Region Exon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

D.R.W. is supported by NIH grants AI089972 and AI113217, by the Mucosal Immunology Studies Team, and holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund.

References

  1. Audzevich T, Pearce G, Breucha M, Guenal G, Jessberger R (2013) Control of the STAT6-Bcl6 antagonism by SWAP-70 determines IgE production. J Immunol 190(10):4946–4955PubMedCrossRefGoogle Scholar
  2. Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109:S45–S55PubMedCrossRefGoogle Scholar
  3. Basu U, Chaudhuri J, Alpert C, Dutt S, Ranganath S, Li G, Schrum JP, Manis JP, Alt FW (2005) The AID antibody diversification enzyme is regulated by protein kinase a phosphorylation. Nature 438(7067):508–511PubMedCrossRefGoogle Scholar
  4. Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang TT, Myers D, Wasserman CR, Wesemann DR, Januszyk K, Gregory RI, Deng HT, Lima CD, Alt FW (2011) The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144(3):353–363PubMedCentralPubMedCrossRefGoogle Scholar
  5. Becker-Herman S, Lantner F, Shachar I (2002) Id2 negatively regulates B cell differentiation in the spleen. J Immunol 168(11):5507–5513PubMedCrossRefGoogle Scholar
  6. Besmer E, Market E, Papavasiliou FN (2006) The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination. Mol Cell Biol 26(11):4378–4385PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chaudhuri J, Alt FW (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4(7):541–552PubMedCrossRefGoogle Scholar
  8. Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW (2007) Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 94:157–214PubMedCrossRefGoogle Scholar
  9. Chaudhuri J, Khuong C, Alt FW (2004) Replication protein a interacts with AID to promote deamination of somatic hypermutation targets. Nature 430(7003):992–998PubMedCrossRefGoogle Scholar
  10. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422(6933):726–730PubMedCrossRefGoogle Scholar
  11. Delphin S, Stavnezer J (1995) Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J Exp Med 181 (1):181–192Google Scholar
  12. Dempsey LA, Sun H, Hanakahi LA, Maizels N (1999) G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, a role for G-G pairing in immunoglobulin switch recombination. J Biol Chem 274(2):1066–1071PubMedCrossRefGoogle Scholar
  13. Dickerson SK, Market E, Besmer E, Papavasiliou FN (2003) AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 197(10):1291–1296PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dryer RL, Covey LR (2005) A novel NF-kappa B-regulated site within the human I gamma 1 promoter requires p300 for optimal transcriptional activity. J Immunol 175(7):4499–4507PubMedCrossRefGoogle Scholar
  15. Dudley DD, Chaudhuri J, Bassing CH, Alt FW (2005) Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43–112PubMedCrossRefGoogle Scholar
  16. Erazo A, Kutchukhidze N, Leung M, Christ APG, Urban JF, de Lafaille MAC, Lafaille JJ (2007) Unique maturation program of the IgE response in vivo. Immunity 26(2):191–203PubMedCentralPubMedCrossRefGoogle Scholar
  17. Geha RS, Jabara HH, Brodeur SR (2003) The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol 3(9):721–732PubMedCrossRefGoogle Scholar
  18. Grundbacher FJ (1976) Unusual elevation of ige levels during childhood. Experientia 32(8):1063–1064PubMedCrossRefGoogle Scholar
  19. Hackney JA, Misaghi S, Senger K, Garris C, Sun YL, Lorenzo MN, Zarrin AA (2009) DNA targets of AID: evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol 101:163–189PubMedCrossRefGoogle Scholar
  20. Harris MB, Chang CC, Berton MT, Danial KN, Zhang JD, Kuehner D, Ye BH, Kvatyuk M, Pandolfi PP, Cattoretti G, Dalla-Favera R, Rothman PB (1999) Transcriptional repression of Stat6-dependent interleukin-4-induced genes by Bcl-6: Specific regulation of I epsilon transcription and immunoglobulin E switching. Mol Cell Biol 19(10):7264–7275PubMedCentralPubMedGoogle Scholar
  21. Harris MB, Mostecki J, Rothman PB (2005) Repression of an interleukin-4-responsive promoter requires cooperative BCL-6 function. J Biol Chem 280(13):13114–13121PubMedCrossRefGoogle Scholar
  22. Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A (2006) Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 17(3):173–188PubMedCrossRefGoogle Scholar
  23. Huang FT, Yu KF, Balter BB, Selsing E, Oruc Z, Khamlichi AA, Hsieh CL, Lieber MR (2007) Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain S mu class switch region. Mol Cell Biol 27(16):5921–5932PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ishiguro A, Spirin K, Shiohara M, Tobler A, Norton JD, Rigolet M, Shimbo T, Koeffler HP (1995) Expression of Id2 and Id3 mRNA in human lymphocytes. Leuk Res 19(12):989–996PubMedCrossRefGoogle Scholar
  25. Jung S, Rajewsky K, Radbruch A (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259(5097):984–987PubMedCrossRefGoogle Scholar
  26. Jung S, Siebenkotten G, Radbruch A (1994) Frequency of immunoglobulin-E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med 179(6):2023–2026PubMedCrossRefGoogle Scholar
  27. Junko T, Kazuo K, Tasuku H (2001) Palindromic but not G-rich sequences are targets of class switch recombination. Int Immunol 13(4):495–505CrossRefGoogle Scholar
  28. Kashiwada M, Levy DM, McKeag L, Murray K, Schröder AJ, Canfield SM, Traver G, Rothman PB (2010) IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. P Natl Acad Sci USA 107(2):821–826CrossRefGoogle Scholar
  29. Kenter AL (2012) AID targeting is dependent on RNA polymerase II pausing. Semin Immunol 24(4):281–286PubMedCentralPubMedCrossRefGoogle Scholar
  30. Khamlichi AA, Glaudet F, Oruc Z, Denis V, Le Bert M, Cogné M (2004) Immunoglobulin class-switch recombination in mice devoid of any S mu tandem repeat. Blood 103(10):3828–3836PubMedCrossRefGoogle Scholar
  31. Kinoshita K, Tashiro J, Tomita S, Lee CG, Honjo T (1998) Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9(6):849–858PubMedCrossRefGoogle Scholar
  32. Lefranc M-P, Clement O, Kaas Q, Duprat E, Chastellan P, Coelho I, Combres K, Ginestoux C, Giudicelli V, Chaume D, Lefranc G (2005) IMGT-choreography for immunogenetics and immunoinformatics. Silico Biol 5(1):45–60Google Scholar
  33. Lefranc MP (2001) Nomenclature of the human immunoglobulin heavy (IGH) genes. Exp Clin Immunogenet 18(2):100–116PubMedCrossRefGoogle Scholar
  34. Li GD, White CA, Lam T, Pone EJ, Tran DC, Hayama KL, Zan H, Xu ZM, Casali P (2013) Combinatorial H3K9acS10ph histone modification in IgH locus S regions targets 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination. Cell Rep 5(3):702–714PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lieber MR, Ma YM, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712–720PubMedCrossRefGoogle Scholar
  37. Lin SC, Stavnezer J (1996) Activation of NF-kappa B/Rel by CD40 engagement induces the mouse germline immunoglobulin C gamma 1 promoter. Mol Cell Biol 16(9):4591–4603PubMedCentralPubMedGoogle Scholar
  38. Linehan LA, Warren WD, Thompson PA, Grusby MJ, Berton MT (1998) STAT6 is required for IL-4-induced germline Ig gene transcription and switch recombination. J Immunol 161(1):302–310PubMedGoogle Scholar
  39. Luby TM, Schrader CE, Stavnezer J, Selsing E (2001) The mu switch region tandem repeats are important, but not required, for antibody class switch recombination. J Exp Med 193(2):159–168PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lundgren M, Larsson C, Femino A, Xu MZ, Stavnezer J, Severinson E (1994) Activation of the Ig germ-line gamma-1 promoter—involvement of C/enhancer-binding protein transcription factors and their possible interaction with an NF-IL-4 site. J Immunol 153(7):2983–2995PubMedGoogle Scholar
  41. Mandler R, Finkelman FD, Levine AD, Snapper CM (1993) IL-4 induction of IgE class switching by lipopolysaccharide-activated murine B cells occurs predominantly through sequential switching. J Immunol 150(2):407–418PubMedGoogle Scholar
  42. Mao C, Stavnezer J (2001) Differential regulation of mouse germline Ig gamma 1 and epsilon promoters by IL-4 and CD40. J Immunol 167(3):1522–1534PubMedCrossRefGoogle Scholar
  43. Max EE, Wakatsuki Y, Neurath MF, Strober W (1995) The role of BSAP in immunoglobulin isotype switching and B cell proliferation. Curr Top Microbiol 194:449–458Google Scholar
  44. Melamed D, Benschop RJ, Cambier JC, Nemazee D (1998) Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92(2):173–182PubMedCrossRefGoogle Scholar
  45. Messner B, Stütz AM, Albrecht B, Peiritsch S, Woisetschläger M (1997) Cooperation of binding sites for STAT6 and NF kappa B/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J Immunol 159(7):3330–3337Google Scholar
  46. Mills FC, Thyphronitis G, Finkelman FD, Max EE (1992) Ig mu-epsilon isotype switch in IL-4-treated human B-lymphoblastoid cells—evidence for a sequential switch. J Immunol 149(3):1075–1085PubMedGoogle Scholar
  47. Misaghi S, Garris CS, Sun Y, Nguyen A, Zhang J, Sebrell A, Senger K, Yan D, Lorenzo MN, Heldens S, Lee WP, Xu M, Wu J, DeForge L, Sai T, Dixit VM, Zarrin AA (2010) Increased targeting of donor switch region and IgE in S gamma 1-deficient B Cells. J Immunol 185(1):166–173PubMedCrossRefGoogle Scholar
  48. Misaghi S, Senger K, Sai T, Qu Y, Sun YL, Hamidzadeh K, Nguyen A, Jin ZY, Zhou MJ, Yan DH, Lin WY, Lin ZH, Lorenzo MN, Sebrell A, Ding JB, Xu M, Caplazi P, Austin CD, Balazs M, Roose-Girma M, DeForge L, Warming S, Lee WP, Dixit VM, Zarrin AA (2013) Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination. Proc Natl Acad Sci USA 110(39):15770–15775PubMedCentralPubMedCrossRefGoogle Scholar
  49. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Gene Dev 15(8):995–1006PubMedCentralPubMedCrossRefGoogle Scholar
  50. Monroe RJ, Seidl KJ, Gaertner F, Han SH, Chen F, Sekiguchi J, Wang JY, Ferrini R, Davidson L, Kelsoe G, Alt FW (1999) RAG2: GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11(2):201–212PubMedCrossRefGoogle Scholar
  51. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102(5):553–563PubMedCrossRefGoogle Scholar
  52. Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T (2000) Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68(1):85–88PubMedCrossRefGoogle Scholar
  53. Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T, Agata Y, Yokota Y, Shimizu A (2003) Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302(5653):2137–2140PubMedCrossRefGoogle Scholar
  54. Odegard VH, Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6(8):573–583PubMedCrossRefGoogle Scholar
  55. Okazaki IM, Kinoshita K, Muramatsu M, Yoshikawa K, Honjo T (2002) The AID enzyme induces class switch recombination in fibroblasts. Nature 416(6878):340–345PubMedCrossRefGoogle Scholar
  56. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, San-Martin BR, Barreto V, Nieland TJ, Root DE, Casellas R, Nussenzweig MC (2010) Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143(1):122–133PubMedCentralPubMedCrossRefGoogle Scholar
  57. Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424(6944):103–107PubMedCrossRefGoogle Scholar
  58. Pinaud E, Marquet M, Fiancette R, Péron S, Vincent-Fabert C, Denizot Y, Cogné M (2011) The IgH locus 3′ regulatory region: pulling the strings from behind. Adv Immunol 110:27–70PubMedCrossRefGoogle Scholar
  59. Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4(5):452–456PubMedCrossRefGoogle Scholar
  60. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Lagelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102(5):565–575PubMedCrossRefGoogle Scholar
  61. Rooney S, Chaudhuri J, Alt FW (2004) The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev 200:115–131PubMedCrossRefGoogle Scholar
  62. Rothman P, Chen YY, Lutzker S, Li SC, Stewart V, Coffman R, Alt FW (1990) Structure and expression of germ line immunoglobulin heavy-chain epsilon-transcripts—interleukin-4 plus lipopolysaccharide-directed switching to C-epsilon. Mol Cell Biol 10(4):1672–1679PubMedCentralPubMedGoogle Scholar
  63. Roy D, Yu KF, Lieber MR (2008) Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol 28(1):50–60PubMedCentralPubMedCrossRefGoogle Scholar
  64. Schrader CE, Bradley SP, Vardo J, Mochegova SN, Flanagan E, Stavnezer J (2003) Mutations occur in the Ig Smu region but rarely in Sgamma regions prior to class switch recombination. EMBO J 22(21):5893–5903PubMedCentralPubMedCrossRefGoogle Scholar
  65. Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J (2005) Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 202(4):561–568PubMedCentralPubMedCrossRefGoogle Scholar
  66. Seidl KJ, Bottaro A, Vo A, Zhang J, Davidson L, Alt FW (1998) An expressed neo(r) cassette provides required functions of the I(gamma)2b exon for class switching. Int Immunol 10(11):1683–1692PubMedCrossRefGoogle Scholar
  67. Shen CH, Stavnezer J (1998) Interaction of Stat6 and NF-kappa B: direct association and synergistic activation of interleukin-4-induced transcription. Mol Cell Biol 18(6):3395–3404PubMedCentralPubMedGoogle Scholar
  68. Shen CH, Stavnezer J (2001) Activation of the mouse Ig germline epsilon promoter by IL-4 is dependent on AP-1 transcription factors. J Immunol 166(1):411–423PubMedCrossRefGoogle Scholar
  69. Shen HM, Storb U (2004) Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc Natl Acad Sci USA 101(35):12997–13002PubMedCentralPubMedCrossRefGoogle Scholar
  70. Shinkura R, Tian M, Smith M, Chua K, Fujiwara Y, Alt FW (2003) The influence of transcriptional orientation on endogenous switch region function. Nat Immunol 4(5):435–441PubMedCrossRefGoogle Scholar
  71. Shlomchik MJ, Weisel F (2012) Germinal centers. Immunol Rev 247:5–10PubMedCrossRefGoogle Scholar
  72. Stütz AM, Woisetschläger M (1999) Functional synergism of STAT6 with either NF-kappa B or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. J Immunol 163(8):4383–4391PubMedGoogle Scholar
  73. Sugai M, Gonda H, Kusunoki T, Katakai T, Yokota Y, Shimizu A (2003) Essential role of Id2 in negative regulation of IgE class switching. Nat Immunol 4(1):25–30PubMedCrossRefGoogle Scholar
  74. Thienes CP, DeMonte L, Monticelli S, Busslinger M, Gould HJ, Vercelli D (1997) The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the human epsilon germline promoter. J Immunol 158(12):5874–5882PubMedGoogle Scholar
  75. Tracy RB, Hsieh CL, Lieber MR (2000) Stable RNA/DNA hybrids in the mammalian genome: inducible intermediates in immunoglobulin class switch recombination. Science 288(5468):1058–1061PubMedCrossRefGoogle Scholar
  76. Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GTJ, O’Neill JS, Tamanini F, Turner DJ, Reddy AB (2013) Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci USA 110(4):1554–1559PubMedCentralPubMedCrossRefGoogle Scholar
  77. Verkaik NS, Esveldt-van Lange REE, van Heemst D, Brüggenwirth HT, Hoeijmakers JHJ, Zdzienicka MZ, van Gent DC (2002) Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells. Eur J Immunol 32(3):701–709PubMedCrossRefGoogle Scholar
  78. Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogné N, Cogné M, Denizot Y (2010) Genomic deletion of the whole IgH 3′ regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood 116(11):1895–1898PubMedCrossRefGoogle Scholar
  79. Vuong BQ, Herrick-Reynolds K, Vaidyanathan B, Pucella JN, Ucher AJ, Donghia NM, Gu XW, Nicolas L, Nowak U, Rahman N, Strout MP, Mills KD, Stavnezer J, Chaudhuri J (2013) A DNA break- and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol 14(11):1183–U1107PubMedCentralPubMedCrossRefGoogle Scholar
  80. Wesemann DR, Magee JM, Boboila C, Calado DP, Gallagher MP, Portuguese AJ, Manis JP, Zhou X, Recher M, Rajewsky K, Notarangelo LD, Alt FW (2011) Immature B cells preferentially switch to IgE with increased direct Smu to Sepsilon recombination. J Exp Med 208(13):2733–2746PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wesemann DR, Portuguese AJ, Magee JM, Gallagher MP, Zhou X, Panchakshari RA, Alt FW (2012) Reprogramming IgH isotype-switched B cells to functional-grade induced pluripotent stem cells. Proc Natl Acad Sci USA 109(34):13745–13750PubMedCentralPubMedCrossRefGoogle Scholar
  82. Willmann KL, Milosevic S, Pauklin S, Schmitz KM, Rangam G, Simon MT, Maslen S, Skehel M, Robert I, Heyer V, Schiavo E, Reina-San-Martin B, Petersen-Mahrt SK (2012) A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J Exp Med 209(11):2099–2111PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wu LC, Zarrin AA (2014) The production and regulation of IgE by the immune system. Nat Rev Immunol 14(4):247–259PubMedCrossRefGoogle Scholar
  84. Xiong HZ, Dolpady J, Wabl M, de Lafaille MAC, Lafaille JJ (2012) Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med 209(2):353–364PubMedCentralPubMedCrossRefGoogle Scholar
  85. Xu Z, Zan H, Pone EJ, Mai T, Casali P (2012) Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12(7):517–531PubMedCentralPubMedCrossRefGoogle Scholar
  86. Xue KM, Rada C, Neuberger MS (2006) The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2(−/−) ung(−/−) mice. J Exp Med 203(9):2085–2094PubMedCentralPubMedCrossRefGoogle Scholar
  87. Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, Gumaste S, Geyer M, Zarrin AA, Manis JP, Rajewsky K, Alt FW (2007) IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449(7161):478–U479PubMedCrossRefGoogle Scholar
  88. Yoshida K, Matsuoka M, Usuda S, Mori A, Ishizaka K, Sakano H (1990) Immunoglobulin switch circular DNA in the mouse infected with nippostrongylus-brasiliensis—evidence for successive class switching from mu to epsilon via gamma-1. Proc Natl Acad Sci USA 87(20):7829–7833PubMedCentralPubMedCrossRefGoogle Scholar
  89. Yu KF, Chedin F, Hsieh CL, Wilson TE, Lieber MR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4(5):442–451PubMedCrossRefGoogle Scholar
  90. Yu KF, Lieber MR (2003) Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair 2(11):1163–1174PubMedCrossRefGoogle Scholar
  91. Zarrin AA, Alt FW, Chaudhuri J, Stokes N, Kaushal D, Du Pasquier L, Tian M (2004) An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol 5(12):1275–1281PubMedCrossRefGoogle Scholar
  92. Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW (2005) Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci USA 102(7):2466–2470PubMedCentralPubMedCrossRefGoogle Scholar
  93. Zhang J, Bottaro A, Li S, Stewart V, Alt FW (1993) A selective defect in IgG2b switching as a result of targeted mutation of the I-gamma-2b promoter and exon. EMBO J 12(9):3529–3537PubMedCentralPubMedGoogle Scholar
  94. Zhang T, Franklin A, Boboila C, McQuay A, Gallagher MP, Manis JP, Khamlichi AA, Alt FW (2010) Downstream class switching leads to IgE antibody production by B lymphocytes lacking IgM switch regions. Proc Natl Acad Sci USA 107(7):3040–3045PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Medicine, Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations