The Joint History of Tróia Peninsula and Sado Ebb-Delta

  • Susana Costas
  • Luís Rebêlo
  • Pedro Brito
  • Christopher I. Burbidge
  • Maria Isabel Prudêncio
  • Duncan FitzGerald
Part of the Coastal Research Library book series (COASTALRL, volume 12)


Traditionally, the study of coastal evolution has focused on emergent barriers or stratigraphic sequences on the adjacent shelf, but seldom are these two systems studied holistically or the information combined into a single model. Here, we combine data sets from the emerged and submerged sectors of a prograding coast, from the coastal dune to the innermost continental shelf, to reconstruct the long-term history of shelf reworking and spit elongation of Tróia Peninsula in Portugal. This analysis involves synthesizing high-resolution reflection seismic profiles from the shoreface, Ground Penetrating Radar images from the emerged sand barrier, high resolution digital terrain models, and Optically Stimulated Luminescence and radiocarbon dating of sediment samples from the emergent sand barrier and backbarrier. The results document the growth of the sandy peninsula in five major phases of progradation represented by massive foredunes separated by hiatuses of sedimentation and periods of shoreline stability. Formation of the peninsula began circa 6,500 years ago by spit elongation from the south as documented by the oldest beach sediments within the spit. The spit enlarged until a tidal inlet was formed around 3,300 years ago, which caused the construction of the ebb-tidal delta. The latter sequestrated the sand supplied to the spit inhibiting spit progradation until the ebb delta reached an equilibrium volume, allowing shoreline progradation out of phase with delta enlargement. Hiatuses in spit progradation are tentatively related to the onset of erosive conditions caused by enhanced storminess around 4,000 and 1,800 years ago and to a tsunami 250 years ago. These results suggest that the growth of the spit is largely controlled by self-adjustment processes and/or major climate shifts.


Spit Ebb-delta Shoreline progradation GPR Shoreface Foredune Transgressive dune OSL 



The authors would like to thank Gabriel Menezes, Marco Ferraz and Rita González for their participation during fieldwork. This research was founded by the Portuguese Science Foundation (FCT) through the projects SCARPS (PTDC/CTE-GIX/101466/2008). Susana Costas thanks the FCT for financial support through the program Ciência-2007.


  1. Alday M, Cearreta A, Cachão M, Freitas MC, Andrade C, Gama C (2006) Micropalaeontological record of Holocene estuarine and marine stages in the Corgo do Porto rivulet (Mira River, SW Portugal). Estuar Coast Shelf Sci 66(3–4):532–543CrossRefGoogle Scholar
  2. Aubrey DG, Gaines AG Jr (1982) Rapid formation and degradation of barrier spits in areas with low rates of littoral drift. Mar Geol 49(3–4):257–277, CrossRefGoogle Scholar
  3. Bao R, Freitas MC, Andrade C (1999) Separating eustatic from local environmental effects: a late-Holocene record of coastal change in Albufeira Lagoon, Portugal. The Holocene 9:341–352CrossRefGoogle Scholar
  4. Billeaud I, Tessier B, Lesueur P (2009) Impacts of late Holocene rapid climate changes as recorded in a macrotidal coastal setting (Mont-Saint-Michel Bay, France). Geology 37(11):1031–1034. doi: 10.1130/g30310a.1 CrossRefGoogle Scholar
  5. Bristow CS, Pucillo K (2006) Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guichen Bay, south-east South Australia. Sedimentology 53:769–788CrossRefGoogle Scholar
  6. Bristow CS, Chroston PN, Bailey SD (2000) The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47(5):923–944. doi: 10.1046/j.1365-3091.2000.00330.x CrossRefGoogle Scholar
  7. Brito P (2010) Na Fronteira do Mar – Evolução Geológica do Estuário do Sado e da Plataforma Continental entre Sesimbra e o Canhão de Setúbal nos Últimos ~ 50000 anos). Câmara Municipal de Sesimbra, Sesimbra, PortugalGoogle Scholar
  8. Burbidge CI, Trindade MJ, Dias MI, Oosterbeek L, Scarre C, Rosina P, Cruz A, Cura S, Cura P, Caron L, Prudêncio MI, Cardoso GJO, Franco D, Marques R, Gomes H (2014) Luminescence dating and associated analyses in transition landscapes of the Alto Ribatejo, central Portugal. Quat Geochronol 20(0):65–77, CrossRefGoogle Scholar
  9. Buynevich IV, FitzGerald DM, Goble RJ (2007) A 1500 yr record of North Atlantic storm activity based on optically dated relict beach scarps. Geology 35(6):543–546CrossRefGoogle Scholar
  10. Cearreta A, Alday M, Freitas MC, Andrade C (2007) Postglacial foraminifera and paleoenvironments of the Melides lagoon (SW Portugal): towards a regional model of coastal evolution. J Foraminifer Res 37(2):125–135. doi: 10.2113/gsjfr.37.2.125 CrossRefGoogle Scholar
  11. Clemmensen LB, Murray A, Heinemeier J, de Jong R (2009) The evolution of Holocene coastal dunefields, Jutland, Denmark: a record of climate change over the past 5,000 years. Geomorphology 105(3–4):303–313. doi: 10.1016/j.geomorph.2008.10.003 CrossRefGoogle Scholar
  12. Costa M, Silva R, Vitorino J (2001) Contribuição para o estudo do clima de agitação marítima na costa Portuguesa. In: II Jornadas Portuguesas de Engenharia Costeira e Portuária. Sines, PortugalGoogle Scholar
  13. Costas S, FitzGerald D (2011) Sedimentary architecture of a spit-end (Salisbury Beach, Massachusetts): the imprints of sea-level rise and inlet dynamics. Mar Geol 284(1–4):203–216. doi: 10.1016/j.margeo.2011.04.002 CrossRefGoogle Scholar
  14. Costas S, Alejo I, Rial F, Lorenzo H, Nombela MA (2006) Cyclical evolution of a modern transgressive sand barrier in NW-Spain elucidated by GPR and aerial photo. J Sediment Res 76:1077–1092CrossRefGoogle Scholar
  15. Costas S, Brito P, Fitzgerald D, Goble R (2013) Climate-driven episodes of dune mobilization and barrier growth along the central coast of Portugal, Special Publications 388. Geological Society, London. doi: 10.1144/sp388.6 Google Scholar
  16. Daniels DJ (2005) Ground penetrating radar. In: Encyclopedia of RF and microwave engineering. John Wiley & Sons, Inc., Hoboken. doi: 10.1002/0471654507.eme152
  17. Dias MI, Prudêncio MI (2007) Neutron activation analysis of archaeological materials: an overview of the ITN NAA laboratory, Portugal. Archaeometry 49:383–393CrossRefGoogle Scholar
  18. Dill AC, Turberg P, Müller I, Parriaux A (2009) The combined use of radio-frequency electromagnetics and radiomagnetotellurics methods in non-ideal field conditions for delineating hydrogeological boundaries and for environmental problems. Environ Geol 56(6):1071–1091. doi: 10.1007/s00254-008-1208-1 CrossRefGoogle Scholar
  19. Etienne R, Makaroun Y, Mayet F (1994) Un grand compexe industriel à Tróia (Portugal). de Boccard, ParisGoogle Scholar
  20. Freitas MC, Andrade C, Cruces A (2002) The geological record of environmental changes in southwestern Portuguese coastal lagoons since the Lateglacial. Quat Int 93–94:161–170CrossRefGoogle Scholar
  21. Freitas MC, Andrade C, Rocha F, Tassinari C, Munhá JM, Cruces A, Vidinha J, Da Silva CM (2003) Lateglacial and Holocene environmental changes in Portuguese coastal lagoons 1: the sedimentological and geochemical records of the Santo André coastal area. The Holocene 13:433–446CrossRefGoogle Scholar
  22. Gama C, Taborda R, Andrade C (2006) Longshore sediment transport in the Tróia-Sines Littoral Ribbon (SW Portugal). Paper presented at the VII Congresso Nacional de Geologia, EstremozGoogle Scholar
  23. Gomes NMN (1992) Dinâmica dunar do arco litoral Tróia-Sines (Portugal). MSc, University of Lisbon, LisboaGoogle Scholar
  24. Goy JL, Zazo C, Dabrio CJ (2003) A beach-ridge progradation complex reflecting periodical sea-level and climate variability during the Holocene (Gulf of Almería, Western Mediterranean). Geomorphology 50(1–3):251–268CrossRefGoogle Scholar
  25. Hayes MO (1980) General morphology and sediment patterns in tidal inlets. Sediment Geol 26(1–3):139–156. doi: 10.1016/0037-0738(80)90009-3 CrossRefGoogle Scholar
  26. Hein CJ, FitzGerald DM, Carruthers EA, Stone BD, Barnhardt WA, Gontz AM (2012) Refining the model of barrier island formation along a paraglacial coast in the Gulf of Maine. Mar Geol 307–310(0):40–57, CrossRefGoogle Scholar
  27. Hesp PA (1999) The beach backshore and beyond. In: Short AD (ed) Handbook of beach and shoreface morphodynamics. Wiley, New York, pp 145–169Google Scholar
  28. Hesp PA, Dillenburg SR, Barboza EG, Tomazelli LJ, Ayup-Zouain RN, Esteves LS, Gruber NLS, Toldo-Jr EE, Tabajara LLCA, Clerot LCP (2005) Beach ridges, foredunes or transgressive dunefields? Definitions and an examination of the Torres to Tramandaí barrier system, Southern Brazil. An Acad Bras Cienc 77:493–508CrossRefGoogle Scholar
  29. Jacob J, Gama C, Salgado R, Liu JT, Silva A (2009) Shadowing effects on beach morphodynamics during storm events on Tróia-Sines embayed coast, southwest Portugal. J Coast Res Spec Issue 56 (Proceedings of the 10th International Coastal Symposium):73–77Google Scholar
  30. Leorri E, Cearreta A, Milne G (2012) Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quat Sci Rev 42(0):59–73, CrossRefGoogle Scholar
  31. Masselink G, Short AD (1993) The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. J Coast Res 9(3):785–800Google Scholar
  32. Mauz B, Hijma MP, Amorosi A, Porat N, Galili E, Bloemendal J (2013) Aeolian beach ridges and their significance for climate and sea level: concept and insight from the Levant coast (East Mediterranean). Earth Sci Rev 121(0):31–54, CrossRefGoogle Scholar
  33. Meistrell FJ (1972) The spit-platform concept: laboratory observation of spit development. In: Schwartz ML (ed) Spits and bars. Dowden, Hutchinson & Ross, Stroudsburg, pp 225–283Google Scholar
  34. Mitchum RMJ, Vail PR, Thompson S (1977) Seismic stratigraphy and global changes of sea level, Part 2: The depositional sequence as a basic unit for stratigraphic analysis. In: Payton CE (ed) Seismic stratigraphy – applications to hydrocarbon exploration, vol AAPG Memoir 26, pp 53–62Google Scholar
  35. Naughton F, Sanchez Goni MF, Drago T, Freitas MC, Oliveira A (2007) Holocene changes in the Douro Estuary (Northwestern Iberia). J Coast Res 23:711–720CrossRefGoogle Scholar
  36. Otvos EG (2000) Beach ridges – definitions and significance. Geomorphology 32(1–2):83–108, CrossRefGoogle Scholar
  37. Pinto IV, Magalhães AP, Brum P (2011) O complexo industrial de Tróia desde os tempos dos Cornelii Bocchi. Escritor Lusitano da Idade de Prata da Literatura Latina. In: Cardoso JL, Almagro-Gorbea M (eds) Lucius Cornelius Bocchus. Academia Portuguesa da História. Real Academia de la Historia, Tróia, pp 133–167Google Scholar
  38. Psuty NP (1992) Spatial variation in coastal foredune development. In: Carter RWG, Curtis TGF, Sheehy-Skeffington MJ (eds) Coastal dunes: geomorphology, ecology, and management for conservation. Balkema, Rotterdam, pp 3–13Google Scholar
  39. Psuty NP, Moreira ME (2000) Holocene sedimentation and sea level rise in the Sado Estuary, Portugal. J Coast Res 16(1):125–138Google Scholar
  40. Rebêlo L, Ferraz M, Brito P (2009) Tróia Peninsula evolution: the dune morphology record. J Coast Res SI56:352–355Google Scholar
  41. Rebêlo L, Costas S, Brito P, Ferraz M, Prudêncio MI, Burbidge C (2013) Imprints of the 1755 tsunami in the Tróia Peninsula shoreline, Portugal In: Conley DC, Masselink G, Russell PE, O’Hare TJ (eds) 12th international coastal symposium, Plymouth, England, J Coast Res, pp 814–819Google Scholar
  42. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1029–1058Google Scholar
  43. Sabatier P, Dezileau L, Colin C, Briqueu L, Bouchette F, Martinez P, Siani G, Raynal O, Von Grafenstein U (2012) 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. Quat Res 77(1):1–11. doi: 10.1016/j.yqres.2011.09.002 CrossRefGoogle Scholar
  44. Simpkin PG, Davis A (1993) For seismic profiling in very shallow water, a novel receiver. Sea Technol 34(9):21–28Google Scholar
  45. Sorrel P, Debret M, Billeaud I, Jaccard SL, McManus JF, Tessier B (2012) Persistent non-solar forcing of Holocene storm dynamics in coastal sedimentary archives. Nat Geosci 5(12):892–896, CrossRefGoogle Scholar
  46. Spencer CD, Plater AJ, Long AJ (1998) Rapid coastal change during the mid- to late Holocene: the record of barrier estuary sedimentation in the Romney Marsh region, southeast England. The Holocene 8(2):143–163. doi: 10.1191/095968398673197622 CrossRefGoogle Scholar
  47. Stapor FJW, Mathews TD, Lindfors-Kearns FE (1991) Barrier-island progradation and Holocene sea-level history in Southwest Florida. J Coast Res 7(3):815–838Google Scholar
  48. Tamura T (2012) Beach ridges and prograded beach deposits as palaeoenvironment records. Earth Sci Rev 114(3–4):279–297, CrossRefGoogle Scholar
  49. Tamura T, Murakami F, Nanayama F, Watanabe K, Saito Y (2008) Ground-penetrating radar profiles of Holocene raised-beach deposits in the Kujukuri strand plain, Pacific coast of eastern Japan. Mar Geol 248(1–2):11–27. doi: 10.1016/j.margeo.2007.10.002 CrossRefGoogle Scholar
  50. Thom BG, Roy PS (1985) Relative sea levels and coastal sedimentation in Southeast Australia in the Holocene. J Sediment Res 55(2):257–264. doi: 10.1306/212f8693-2b24-11d7-8648000102c1865d Google Scholar
  51. van Heteren S, Fitzgerald DM, McKinlay PA, Buynevich IV (1998) Radar facies of paraglacial barrier systems: coastal New England, USA. Sedimentology 45(1):181–200CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Susana Costas
    • 1
    • 2
  • Luís Rebêlo
    • 1
  • Pedro Brito
    • 1
  • Christopher I. Burbidge
    • 3
  • Maria Isabel Prudêncio
    • 3
  • Duncan FitzGerald
    • 4
  1. 1.Laboratório Nacional de Energía e GeologíaAmadoraPortugal
  2. 2.Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de GambelasFaroPortugal
  3. 3.C²TN, Campus Tecnológico e Nuclear, Instituto Superior TécnicoUniversidade Técnica de LisboaBobadela LRSPortugal
  4. 4.Boston University Earth & EnvironmentBostonUSA

Personalised recommendations