Advertisement

Using Linked Data to Diversify Search Results a Case Study in Cultural Heritage

  • Chris Dijkshoorn
  • Lora Aroyo
  • Guus Schreiber
  • Jan Wielemaker
  • Lizzy Jongma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8876)

Abstract

In this study we consider wether, and to what extent, additional semantics in the form of Linked Data can help diversifying search results. We undertake this study in the domain of cultural heritage. The data consists of collection data of the Rijksmuseum Amsterdam together with a number of relevant external vocabularies, which are all published as Linked Data. We apply an existing graph search algorithm to this data, using entries from the museum query log as test set. The results show that in this domain an increase in diversity can be achieved through adding external vocabularies. We also analyse why some vocabularies have a significant effect, while others influence the results only marginally.

Keywords

Linked Data Diversity Semantic Search Cultural Heritage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM 2009, pp. 5–14. ACM, New York (2009)Google Scholar
  2. 2.
    de Boer, V., Wielemaker, J., van Gent, J., Hildebrand, M., Isaac, A., van Ossenbruggen, J., Schreiber, G.: Supporting Linked Data Production for Cultural Heritage Institutes: The Amsterdam Museum Case Study. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 733–747. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Grimnes, G.A., Edwards, P., Preece, A.D.: Instance based clustering of semantic web resources. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 303–317. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Hollink, L., Schreiber, G., Wielinga, B.: Patterns of semantic relations to improve image content search. Web Semantics Science Services and Agents on the World Wide Web 5(3), 195–203 (2007)CrossRefGoogle Scholar
  5. 5.
    Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila, M., Kettula, S.: Finnish museums on the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 224–241 (2005)CrossRefGoogle Scholar
  6. 6.
    Isaac, A., Haslhofer, B.: Europeana linked open data – data.europeana.eu. Semantic Web Journal 4(3), 291–297 (2013)Google Scholar
  7. 7.
    Passant, A.: seevl: mining music connections to bring context, search and discovery to the music you like. Semantic Web Challenge 2011 (2011)Google Scholar
  8. 8.
    Raimond, Y., Ferne, T.: The bbc world service archive prototype. Semantic Web Challenge 2013 (2013)Google Scholar
  9. 9.
    Szekely, P., Knoblock, C.A., Yang, F., Zhu, X., Fink, E.E., Allen, R., Goodlander, G.: Connecting the smithsonian american art museum to the linked data cloud. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 593–607. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Tordai, A., van Ossenbruggen, J., Schreiber, G., Wielinga, B.: Aligning large SKOS-like vocabularies: Two case studies. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 198–212. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Wang, S., Isaac, A., Charles, V., Koopman, R., Agoropoulou, A., van der Werf, T.: Hierarchical structuring of cultural heritage objects within large aggregations. CoRR (2013)Google Scholar
  12. 12.
    Wang, Y., Stash, N., Aroyo, L., Gorgels, P., Rutledge, L., Schreiber, G.: Recommendations based on semantically enriched museum collections. Web Semantics: Science, Services and Agents on the World Wide Web 6(4), 283–290 (2008)CrossRefGoogle Scholar
  13. 13.
    Wielemaker, J., Hildebrand, M., van Ossenbruggen, J., Schreiber, G.: Thesaurus-Based Search in Large Heterogeneous Collections. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 695–708. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chris Dijkshoorn
    • 1
  • Lora Aroyo
    • 1
  • Guus Schreiber
    • 1
  • Jan Wielemaker
    • 1
  • Lizzy Jongma
    • 2
  1. 1.Computer Science, The Network InstituteVU University AmsterdamThe Netherlands
  2. 2.Rijksmuseum AmsterdamThe Netherlands

Personalised recommendations