Inductive Lexical Learning of Class Expressions

  • Lorenz Bühmann
  • Daniel Fleischhacker
  • Jens Lehmann
  • Andre Melo
  • Johanna Völker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8876)


Despite an increase in the number of knowledge bases published according to Semantic Web W3C standards, many of those consist primarily of instance data and lack sophisticated schemata, although the availability of such schemata would allow more powerful querying, consistency checking and debugging as well as improved inference. One of the reasons why schemata are still rare is the effort required to create them. Consequently, numerous ontology learning approaches have been developed to simplify the creation of schemata. Those approaches usually either learn structures from text or existing RDF data. In this submission, we present the first approach combining both sources of evidence, in particular we combine an existing logical learning approach with statistical relevance measures applied on textual resources. We perform an experiment involving a manual evaluation on 100 classes of the DBpedia 3.9 dataset and show that the inclusion of relevance measures leads to a significant improvement of the accuracy over the baseline algorithm.


Search Tree Feature Subset Description Logic Relevance Measure Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  2. 2.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bühmann, L., Lehmann, J.: Pattern based knowledge base enrichment. In: 2th International Semantic Web Conference, Sydney, Australia, October 21-25 (2013)Google Scholar
  4. 4.
    Chaudhari, D., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical significance, and word association. In: EMNLP, pp. 1058–1068. ACL (2011)Google Scholar
  5. 5.
    Cohen, W.W., Hirsh, H.: Learnability of description logics. In: Proceedings of the Fourth Annual Workshop on Computational Learning Theory. ACM Press (1992)Google Scholar
  6. 6.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning, pp. 121–133. Morgan Kaufmann (1994)Google Scholar
  7. 7.
    Damani, O.P.: Improving pointwise mutual information (pmi) by incorporating significant co-occurrence. CoRR, abs/1307.0596 (2013)Google Scholar
  8. 8.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 442–457. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Firth, J.R.: A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis, 1–32 (1957)Google Scholar
  11. 11.
    Fleiss, J.L., et al.: Measuring nominal scale agreement among many raters. Psychological Bulletin 76(5), 378–382 (1971)CrossRefGoogle Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  13. 13.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: COLING, pp. 539–545 (1992)Google Scholar
  14. 14.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. International Journal on Semantic Web and Information Systems 5(2), 25–48 (2009)CrossRefGoogle Scholar
  15. 15.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  16. 16.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1), 273–324 (1997)zbMATHCrossRefGoogle Scholar
  17. 17.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)CrossRefGoogle Scholar
  21. 21.
    Lehmann, J., Haase, C.: Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., Kleef, P.v., Auer, S., Bizer, C.: DBpedia – A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web Journal (2014)Google Scholar
  24. 24.
    Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning. Studies on the Semantic Web. AKA Heidelberg (2014)Google Scholar
  25. 25.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent systems 16(2), 72–79 (2001)CrossRefGoogle Scholar
  26. 26.
    Mitchell, T.M.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  28. 28.
    Presutti, V., Draicchio, F., Gangemi, A.: Knowledge Extraction Based on Discourse Representation Theory and Linguistic Frames. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 114–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)Google Scholar
  30. 30.
    Völker, J., Hitzler, P., Cimiano, P.: Acquisition of OWL DL axioms from lexical resources. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 670–685. Springer, Heidelberg (2007)Google Scholar
  31. 31.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)Google Scholar
  32. 32.
    Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: A look back and into the future. ACM Comput. Surv. 44(4), 20 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lorenz Bühmann
    • 1
  • Daniel Fleischhacker
    • 2
  • Jens Lehmann
    • 1
  • Andre Melo
    • 2
  • Johanna Völker
    • 2
  1. 1.AKSW Research GroupUniversity of LeipzigGermany
  2. 2.Data & Web Science Research GroupUniversity of MannheimGermany

Personalised recommendations