Advertisement

Measuring Similarity in Ontologies: A New Family of Measures

  • Tahani Alsubait
  • Bijan Parsia
  • Uli Sattler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8876)

Abstract

Several attempts have been already made to develop similarity measures for ontologies. We noticed that some existing similarity measures are ad-hoc and unprincipled. In addition, there is still a need for similarity measures which are applicable to expressive Description Logics and which are terminological. To address these requirements, we have developed a new family of similarity measures. Two separate empirical studies have been carried out to evaluate the new measures. First, we compare the new measures along with some existing measures against a gold-standard. Second, we examine the practicality of using the new measures over an independently motivated corpus of ontologies.

Keywords

Similarity Measure Semantic Similarity Description Logic Family Health History Ontology Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Campbell, J.R., Carpenter, P., Sneiderman, C., Cohn, S., Chute, C.G., Warren, J.: Phase ii evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. Journal of the American Medical Informatics Association 4, 238–251 (1997)CrossRefGoogle Scholar
  3. 3.
    Cohen, T., Widdows, D.: Empirical distributional semantics: Methods and biomedical applications. Journal of Biomedical Informatics 42(2), 390–405 (2010)CrossRefGoogle Scholar
  4. 4.
    Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory and practice. J. of Artificial Intelligence Research 31, 273–318 (2008)MATHMathSciNetGoogle Scholar
  5. 5.
    d’Amato, C., Staab, S., Fanizzi, N.: On the Influence of Description Logics Ontologies on Conceptual Similarity. In: EKAW 2008 Proceedings of the 16th International Conference on Knowledge Engineering: Practice and Patterns (2008)Google Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  7. 7.
    Hahn, U., Chater, N., Richardson, L.B.: Similarity as transformation. COGNITION 87 (1), 1–32 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL 2 ontologies. In: Proceedings of the 6th International Workshop on OWL: Experiences and Directions, OWLED (2009)Google Scholar
  9. 9.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et du jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  10. 10.
    Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the description logic ALCNR in geographic information retrieval. In: SeBGIS 2006, OTM Workshops 2006, pp. 1681–1692 (2006)Google Scholar
  11. 11.
    Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. of the 10th International Conference on Research on Computational Linguistics, Taiwan (1997)Google Scholar
  12. 12.
    Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures for \(\mathcal{ELH}\)-concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 307–319. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. of the 15th International Conference on Machine Learning, Morgan Kaufmann, San Francisco (1998)Google Scholar
  14. 14.
    Nosofsky, R.M.: Similarity scaling and cognitive process models. Annual Review of Psychology 43, 25–53 (1992)CrossRefGoogle Scholar
  15. 15.
    Pedersen, T., Pakhomov, S., Patwardhan, S., Chute, C.: Measures of semantic similarity and relatedness in the biomedical domain. Journal of Biomedical Informatics 30(3), 288–299 (2007)CrossRefGoogle Scholar
  16. 16.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transaction on Systems, Man, and Cybernetics 19, 17–30 (1989)CrossRefGoogle Scholar
  17. 17.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), vol. 1, pp. 448–453 (1995)Google Scholar
  18. 18.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: Proceedings of the 5th International Workshop on OWL: Experiences and Directions, OWLED-08EU (2008)Google Scholar
  19. 19.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Journal of Web Semantics 5(2) (2007)Google Scholar
  20. 20.
    Tsarkov, D., Horrocks, I.: faCT++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Tversky, A.: Features of similarity. Psycological Review 84(4) (Jully 1977)Google Scholar
  22. 22.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL 1994), pp. 133–138 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tahani Alsubait
    • 1
  • Bijan Parsia
    • 1
  • Uli Sattler
    • 1
  1. 1.School of Computer ScienceThe University of ManchesterUnited Kingdom

Personalised recommendations