Advertisement

Characterisation of Spatial Techniques for Optimised Use in Cultural Heritage Documentation

  • Ann-Kathrin Wiemann
  • Frank Boochs
  • Ashish Karmacharya
  • Stefanie Wefers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8740)

Abstract

Constant technological progress results in new possibilities to produce reliable and rich spatial data of cultural heritage objects. In order to make optimal use of these capabilities, it is important to identify and name the information required to best serve the reasoning processes in these application fields. Correspondingly it is necessary to know about the characteristics of digitization techniques producing the content adapted to the needs of the applications. Due to the considerable complexity of instruments and processes producing the data, it is helpful to have a clear structure which relates the capabilities of the instruments to the requirements of the applications. This paper addresses this topic and shows a way of structuring spatial techniques as well as how this structure can be related to applications in the field of cultural heritage.

Keywords

Cultural Heritage spatial technology 3D documentation Semantic technologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akca, D., Remondino, F., Novák, D., Hanusch, T., Schrotter, G., Gruen, A.: Recording and modeling of cultural heritage objects with coded structured light projection systems. In: Campana, S., Forte, M. (eds.) Remote sensing in archaeology; From space to place, BAR Internat. S., vol. 1568, pp. 375–382. Archaeopress, Oxford (2006)Google Scholar
  2. 2.
    Barazzetti, L., Binda, L., Scaioni, M., Taranto, P.: Photogrammetric survey of complex geometries with low-cost software: Application to the ’G1’ temple in Myson, Vietnam. J. of CH 12(3), 253–262 (2011)Google Scholar
  3. 3.
    Barsanti, S.G., Guidi, G.: 3D digitization of museum content within the 3D-ICONS project. In: Grussenmeyer, P. (ed.) ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci, II-5/W1, pp. 151–156. Copernicus Publications (2013)Google Scholar
  4. 4.
    Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve correspondence problem: A survey. Pattern Recognition 31(7), 963–982 (1998)CrossRefGoogle Scholar
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 34–43 (2001)Google Scholar
  6. 6.
    Bettio, F., Gobbetti, E., Merella, E., Pintus, R.: Improving the digitization of shape and color of 3D artworks in a cluttered environment. In: Proc. Digital Heritage, pp. 23–30. IEEE (2013)Google Scholar
  7. 7.
    Boochs, F., Trémeau, A., Murphy, O., Gerke, M., Lerma, J.L., Karmacharya, A., Karaszewski, M.: Towards a Knowledge Model Bridging Technologies and Applications in Cultural Heritage Documentatiion. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ISPRS Commission V, Riva Del Garda (2014)Google Scholar
  8. 8.
    Boochs, F., Hoffmann, A., Huxhagen, U., Welter, D.: Digital reconstruction of archaeological objects using hybrid sensing techniques – the example Porta Nigra at Trier. In: Campana, S., Forte, M. (eds.) Remote sensing in archaeology; From space to place, BAR Internat. S., vol. 1568, pp. 395–400. Archaeopress, Oxford (2006)Google Scholar
  9. 9.
    Colombo, C., Comanducci, D., Del, B.: Low-Cost 3D Scanning by Exploiting Virtual Image Symmetries. Journal of Multimedia 1(7), 71–76 (2006), doi:10.4304/jmm.1.7.71-76Google Scholar
  10. 10.
    Deumlich, F., Staiger, R.: Instrumentenkunde der Vermessungstechnik, 9. Auflage, Wichmann-Verlag Heidelberg (2002)Google Scholar
  11. 11.
    Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. In: 2006 IEEE Computer Society Conference Computer Vision and Pattern Recognition, vol. 2, pp. 2402–2409. IEEE (2006)Google Scholar
  12. 12.
    Gühring, J.: 3D-Erfassung und Objektrekonstruktion mittels Streifenprojektion. PhD, Universität Stuttgart (2002)Google Scholar
  13. 13.
    GUM - Guide to the Expression of Uncertainty in Measurement (GUM)– DIN-Taschenbuch 303, Längenprüftechnik 1 – Grundnormen, Beuth-Verlag GmbH, Berlin, Wien, Zürich, 2. Auflage (2008)Google Scholar
  14. 14.
    Havemann, S., Settgast, V., Fellner, D., Willems, G., Van Gool, L., Müller, G., Schneider, M., Klein, R.: The Presentation of Cultural Heritage Models in Epoch. In: Arnold, D., Niccolucci, F., Pletinckx, D., Van Gool, L. (eds.) Proceedings of the EPOCH Conference on Open Digital Cultural Heritage Systems, Rome, pp. 1–15 (2008)Google Scholar
  15. 15.
    Hess, R.: Hess, MVM; Robson, S; 3D imaging for museum artefacts: a portable test object for heritage and museum documentation of small objects. In: Proceedings of the XXIInd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, Imaging a Sustainable Future, ISPRS, Melbourne, Australia, UK, 25 August - 1 September, pp. 103–108 (2012)Google Scholar
  16. 16.
    Hollaender, K.: Interdisziplinäre Forschung – Merkmale, Einflußfaktoren und Effekte, Phd. Universität zu Köln (2003)Google Scholar
  17. 17.
    Joeckel, R., Stober, M., Hueb, W.: Elektronische Entfernungs- und Richtungsmessung und ihre Integration in aktuelle Positionierungsverfahren, 5. Auflage, Wichmann-Verlag Heidelberg (2008)Google Scholar
  18. 18.
    Kahmen, Elektronische Meßverfahren in der Geodäsie – Grundlagen und Anwendungen, 2. Auflage, Wichmann-Verlag Karlsruhe (1978)Google Scholar
  19. 19.
    Koksch, M., Barchfeld, D.: Digitale Grabungsdokumentation in einer CAD Umgebung. In: Faulstich, E.I., Hahn-Weishaupt, A. (eds.) Dokumentation und Innovation bei der Erfassung von Kulturgütern. Schriften des Bundesverbands freiberuflicher Kulturwissenschaftler 2, pp. 24–29. NETZpublikation (2009)Google Scholar
  20. 20.
    Luhmann, T.: Nahbereichsphotogrammetrie – Grundlagen, Methoden und Anwendungen, 3. Auflage, Wichmann- VDE Verlag GmbH, Berlin, Offenbach (2010)Google Scholar
  21. 21.
    Mathys, A., Brecko, J., Semal, P.: Comparing 3D digitizing technologies: what are the differences? In: Addison, A.C., De Luca, L., Guidi, G., Pescarin, S. (eds.) Proceedings of the Digital Heritage International Congress 2013, vol. 1, pp. 201–2014. IEEE (2013)Google Scholar
  22. 22.
    Mylopoulos, J., Jurisica, I., Yu, E.: Computational mechanical for knowledge organization. In: Proceedings of the 5th International Conference of the International Society of Knowledge Organization. Lille, France. Ergon Verlag, Würzburg (1998) Google Scholar
  23. 23.
    Prümm, O., Doghaili, M., Pospiš, M.: 3D-Laserscanning für die Bestandsaufnahme in Archäologie und Denkmalpflege. In: Faulstich, E.I., Hahn-Weishaupt, A. (eds.) Dokumentation und Innovation bei der Erfassung von Kulturgütern. Schriften des Bundesverbands freiberuflicher Kulturwissenschaftler, vol. 2, pp. 30–34. NETZpublikation (2009)Google Scholar
  24. 24.
    Quatember, U., Thuswaldner, B., Kalasek, R., Breukmann, B., Bathow, C.: The virtual and physical reconstruction of the Octagon and Hadrian’s Temple in Ephesus. In: Bock, H.G., Jäger, W., Winckler, M.J. (eds.) Scientific Computing and Cultural Heritage. Contributions in Computational Humanities, pp. 217–228. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Schaich, M.: 3D-Scanning-Technologien in der Bau- und Kunstdenkmalpflege und der archäologischen Feld- und Objektdokumentation. In: Faulstich, E.I., Hahn-Weishaupt, A. (eds.) Dokumentation und Innovation bei der Erfassung von Kulturgütern. Schriften des Bundesverbands freiberuflicher Kulturwissenschaftler, vol. 2, pp. 35–46. NETZpublikation (2009)Google Scholar
  26. 26.
    Skarlatos, D., Kiparissi, S.: Comparison of laser scanning, photogrammetry and SfM-MVS pipeline applied in structures and artificial surfaces. In: Shortis, M., Paparoditis, N., Mallet, C. (eds.) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. I-3, pp. 299–304 (2012), doi:10.5194/isprsannals-I-3-299-2012Google Scholar
  27. 27.
    Spickermann, A.: Photodektoren und Auslegekonzepte für 3D-Time-of-Flight-Bildsensoren in 0,35μm-Standrd-CMOS-Technologie PhD Universität Duisburg-Essen (2010)Google Scholar
  28. 28.
    Wefers, S.: Die Mühlenkaskade von Ephesos. Studien zur Technikgeschichte und zur Versorgung einer spätantik bis frühbyzantinischen Stadt. Monogr. RGZM 118 (Mainz in prep.)Google Scholar
  29. 29.
    Wiemann, A.: Structuring Spatial Techniques for Semantic Modelling as base for an Optimised Use in Cultural Heritage Documentation. Master thesis, Fachhochschule Mainz (2014)Google Scholar
  30. 30.
    Zambanini, S., Kampel, M., Schlapke, M.: On the Use of Computer Vision for Numismatic Research. In: Ashley, M., Hermon, S., Proenca, A., Rodriguez-Echavarria, K. (eds.) The 9th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, VAST 2008, pp. 17–24. Eurographics Association Aire-la-Ville (2008)Google Scholar
  31. 31.
  32. 32.
    Europeana – Homepage, http://www.europeana.eu/
  33. 33.
  34. 34.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ann-Kathrin Wiemann
    • 1
  • Frank Boochs
    • 1
  • Ashish Karmacharya
    • 1
  • Stefanie Wefers
    • 1
  1. 1.i3mainzHS Mainz University of Applied SciencesMainzGermany

Personalised recommendations