LMA-Based Motion Retrieval for Folk Dance Cultural Heritage

  • Andreas Aristidou
  • Efstathios Stavrakis
  • Yiorgos Chrysanthou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8740)

Abstract

Motion capture (mocap) technology is an efficient method for digitizing art-performances, and it is becoming a popular method for the preservation and dissemination of dances. However, stylistic variations of human motion are difficult to measure and cannot be directly extracted from the motion capture data itself. In this work, we present a framework based on Laban Movement Analysis (LMA) that aims to identify style qualities in motion and provides a mechanism for motion indexing using the four LMA components (Body, Effort, Shape, Space), which can also be subsequently used for intuitive motion retrieval. We have designed and implemented a prototype motion search engine in which users can perform queries using motion clips in a folk dance database. Results demonstrate that the proposed method can be used in place, or in combination with text-based queries, to enable more effective and flexible motion database search and retrieval.

Keywords

Folk dance library Laban Movement Analysis motion analysis motion capture motion searching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maletić, V.: Body, Space, Expression: The development of Rudolf Laban’s movement and dance concepts. In: Approaches to Semiotics. De Gruyter Mouton (1987)Google Scholar
  2. 2.
    Aristidou, A., Stavrakis, E., Chrysanthou, Y.: Motion analysis for folk dance evaluation. In: EG Workshop on Graphics and Cultural Heritage, GCH 2014. Eurographics (2014)Google Scholar
  3. 3.
    Magnenat-Thalmann, N., Protopsaltou, D., Kavakli, E.: Learning how to dance using a web 3D platform. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 1–12. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Golshani, F., Vissicaro, P., Park, Y.: A multimedia information repository for cross cultural dance studies. Multimedia Tools and Applications 24(2), 89–103 (2004)CrossRefGoogle Scholar
  5. 5.
    Kim, E.S.: Choreosave: A digital dance preservation system prototype. Proc. of the American Society for Info. Science & Technology 48(1), 1–10 (2011)Google Scholar
  6. 6.
    Stavrakis, E., Aristidou, A., Savva, M., Himona, S.L., Chrysanthou, Y.: Digitization of cypriot folk dances. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R. (eds.) EuroMed 2012. LNCS, vol. 7616, pp. 404–413. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    University of Cyprus. Dance Motion Capture Database: http://dancedb.cs.ucy.ac.cy/ (accessed May 25, 2014)
  8. 8.
    Calvert, T., Wilke, L., Ryman, R., Fox, I.: Applications of computers to dance. IEEE Comp. Graphics Applications 25(2), 6–12 (2005)CrossRefGoogle Scholar
  9. 9.
    Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of dance gestures from skeleton animation. In: Proc. of SCA 2011, pp. 147–156. ACM (2011)Google Scholar
  10. 10.
    Chan, J.C.P., Leung, H., Tang, J.K.T., Komura, T.: A virtual reality dance training system using motion capture technology. IEEE Trans. on Learning Technologies 4(2), 187–195 (2011)CrossRefGoogle Scholar
  11. 11.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. Trans. on Graphics 21(3), 473–482 (2002)CrossRefGoogle Scholar
  12. 12.
    Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proc. of SCA 2010, pp. 1–10. Eurographics (2010)Google Scholar
  13. 13.
    Keogh, E., Palpanas, T., Zordan, V.B., Gunopulos, D., Cardle, M.: Indexing large human-motion databases. In: Proc. of VLDB, pp. 780–791 (2004)Google Scholar
  14. 14.
    Deng, Z., Gu, Q., Li, Q.: Perceptually consistent example-based human motion retrieval. In: Proc. of I3D 2009, pp. 191–198. ACM (2009)Google Scholar
  15. 15.
    Wu, S., Wang, Z., Xia, S.: Indexing and retrieval of human motion data by a hierarchical tree. In: Proc. of VRST, pp. 207–214. ACM (2009)Google Scholar
  16. 16.
    Chao, M.-W., Lin, C.-H., Assa, J., Lee, T.-Y.: Human motion retrieval from hand-drawn sketch. IEEE Trans. on Visualization and Computer Graphics 18(5), 729–740 (2012)CrossRefGoogle Scholar
  17. 17.
    Forbes, K., Fiume, E.: An Efficient Search Algorithm for Motion Data Using Weighted PCA. In: Proc. of SCA 2005, pp. 67–76. ACM (2005)Google Scholar
  18. 18.
    Liu, G., Zhang, J., Wang, W., McMillan, L.: A system for analyzing and indexing human-motion databases. In: SIGMOD 2005, pp. 924–926 (2005)Google Scholar
  19. 19.
    Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. Trans. on Graphics 24(3), 677–685 (2005)CrossRefGoogle Scholar
  20. 20.
    Müller, M., Röder, T.: Motion templates for automatic classification and retrieval of motion capture data. In: Proc. of SCA 2006, pp. 137–146. Eurographics (2006)Google Scholar
  21. 21.
    Kapadia, M., Chiang, I., Thomas, T., Badler, N.I., Kider, J.T.: Efficient motion retrieval in large motion databases. In: Proc. of I3D 2013, pp. 19–28. ACM (2013)Google Scholar
  22. 22.
    El Raheb, K., Ioannidis, Y.: Dance in the world of data and objects. In: Nesi, P., Santucci, R. (eds.) ECLAP 2013. LNCS, vol. 7990, pp. 192–204. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Aristidou
    • 1
  • Efstathios Stavrakis
    • 1
  • Yiorgos Chrysanthou
    • 1
  1. 1.University of CyprusNicosiaCyprus

Personalised recommendations