Advertisement

A New Tube Detection Filter for Abdominal Aortic Aneurysms

  • Erik SmistadEmail author
  • Reidar Brekken
  • Frank Lindseth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8676)

Abstract

Tube detection filters (TDFs) are useful for segmentation and centerline extraction of tubular structures such as blood vessels and airways in medical images. Most TDFs assume that the cross-sectional profile of the tubular structure is circular. This assumption is not always correct, for instance in the case of abdominal aortic aneurysms (AAAs). Another problem with several TDFs is that they give a false response at strong edges. In this paper, a new TDF is proposed and compared to other TDFs on synthetic and clinical datasets. The results show that the proposed TDF is able to detect large non-circular tubular structures such as AAAs and avoid false positives.

Keywords

Tube detection Aortic aneurysm 

References

  1. 1.
    Bauer, C., Bischof, H.: A novel approach for detection of tubular objects and its application to medical image analysis. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 163–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7, 359–369 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. Med. Image Comput. Comput.-Assist. Interv. 1496, 130–137 (1998)Google Scholar
  4. 4.
    Bauer, C., Bischof, H.: Edge based tube detection for coronary artery centerline extraction. Insight J. (2008)Google Scholar
  5. 5.
    Bauer, C., Bischof, H.: Extracting curve skeletons from gray value images for virtual endoscopy. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, vol. 5128, pp. 393–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Krissian, K., Malandain, G., Ayache, N.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80, 130–171 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bauer, C., Bischof, H., Beichel, R.: Segmentation of airways based on gradient vector flow. In: Proceedings of the 2nd International Workshop on Pulmonary Image Analysis. MICCAI, pp. 191–201. Citeseer (2009)Google Scholar
  8. 8.
    Pock, T., Beichel, R.R., Bischof, H.: A novel robust tube detection filter for 3D centerline extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 481–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bauer, C.: Segmentation of 3D tubular tree structures in medical images. Ph.D. thesis, Graz University of Technology (2010)Google Scholar
  10. 10.
    Smistad, E., Elster, A.C., Lindseth, F.: GPU accelerated segmentation and centerline extraction of tubular structures from medical images. Int. J. Comput. Assist. Radiol. Surg. 9, 561–575 (2014)CrossRefGoogle Scholar
  11. 11.
    Han, X., Xu, C., Prince, J.: Fast numerical scheme for gradient vector flow computation using a multigrid method. IET Image Process. 1(1), 48–55 (2007)CrossRefGoogle Scholar
  12. 12.
    Smistad, E., Lindseth, F.: Multigrid gradient vector flow computation on the GPU. Manuscript submitted for publication (2014)Google Scholar
  13. 13.
    Wink, O., Niessen, W.J., Viergever, M.A.: Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans. Med. Imaging 19, 337–346 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Erik Smistad
    • 1
    • 2
    Email author
  • Reidar Brekken
    • 2
  • Frank Lindseth
    • 1
    • 2
  1. 1.Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF Medical TechnologyTrondheimNorway

Personalised recommendations