Semi-automatic Crohn’s Disease Severity Estimation on MR Imaging

  • Peter J. Schüffler
  • Dwarikanath Mahapatra
  • Robiel Naziroglu
  • Zhang Li
  • Carl A. J. Puylaert
  • Rado Andriantsimiavona
  • Franciscus M. Vos
  • Doug A. Pendsé
  • C. Yung Nio
  • Jaap Stoker
  • Stuart A. Taylor
  • Joachim M. Buhmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8676)

Abstract

Crohn’s disease (CD) is a chronic inflammatory bowel disease which can be visualized by magnetic resonance imaging (MRI). For CD grading, several non-invasive MRI based severity scores are known, most prominent the MaRIA and AIS. As these scores rely on manual MRI readings for individual bowel segments by trained radiologists, automated MRI assessment has been more and more focused in recent research. We show on a dataset of 27 CD patients that semi-automatically measured bowel wall thickness (ABWT) and dynamic contrast enhancement (DCE) completely outperform manual scorings: the segmental correlation to the Crohn’s Disease Endoscopic Index of Severity (CDEIS) of ABWT and DCE is significantly higher (r = .78) than that of MaRIA (r = .45) or AIS (r = .51). Also on a per-patient basis, the models with ABWT and DCE show significantly higher correlation (r = .69) to global CDEIS than MaRIA (r = .46).

Keywords

Computer vision Crohn’s disease Crohn’s disease severity MRI 

References

  1. 1.
    Mary, J.Y., Modigliani, R.: Development and validation of an endoscopic index of the severity for Crohn’s disease: A Prospective multicentre study. Groupe d’Etudes Therapeutiques des Affections Inflammatoires du Tube Digestif (GETAID). Gut 30, 983–989 (1989)CrossRefGoogle Scholar
  2. 2.
    Rimola, J., Ordas, I., Rodriguez, S., Garcia-Bosch, O., Aceituno, M., Llach, J., Ayuso, C., Ricart, E., Panes, J.: Magnetic resonance imaging for evaluation of Crohn’s disease: validation of parameters of severity and quantitative index of activity. Inflamm. Bowel Dis. 17, 1759–1768 (2011)CrossRefGoogle Scholar
  3. 3.
    Rimola, J., Rodriguez, S., Garcia-Bosch, O., Ordas, I., Ayala, E., Aceituno, M., Pellise, M., Ayuso, C., Ricart, E., Donoso, L., Panes, J.: Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn’s disease. Gut 58, 1113–1120 (2009)CrossRefGoogle Scholar
  4. 4.
    Steward, M.J., Punwani, S., Proctor, I., Adjei-Gyamfi, Y., Chatterjee, F., Bloom, S., Novelli, M., Halligan, S., Rodriguez-Justo, M., Taylor, S.A.: Non-perforating small bowel Crohn’s disease assessed by MRI enterography: derivation and histopathological validation of an MR-based activity index. Eur. J. Radiol. 81, 2080–2088 (2012)CrossRefGoogle Scholar
  5. 5.
    Schüffler, Peter J., Mahapatra, Dwarikanath, Tielbeek, Jeroen A.W., Vos, Franciscus M., Makanyanga, Jesica, Pendsé, Doug A., Nio, CYung, Stoker, Jaap, Taylor, Stuart A., Buhmann, Joachim M.: A model development pipeline for Crohn’s disease severity assessment from magnetic resonance images. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds.) Abdominal Imaging 2013. LNCS, vol. 8198, pp. 1–10. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Tielbeek, J.A.W., Makanyanga, J.C., Bipat, S., Pendse, D.A., Nio, C.Y., Vos, F.M., Taylor, S.A., Stoker, J.: Grading Crohn disease activity with MRI: interobserver variability of MRI features, MRI scoring of severity, and correlation with Crohn disease endoscopic index of severity. Am. J. Roentgenol. 201, 1220–1228 (2013)CrossRefGoogle Scholar
  7. 7.
    Vos, F.M., Tielbeek, J.A.W., Naziroglu, R.E., Li, Z., Schüffler, P.J., Mahapatra, D., Wiebel, A., Lavini, C., Buhmann, J.M., Hege, H., Stoker, J., van Vliet, L.J.: Computational modeling for assessment of IBD: To be or not to be? In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 3974–3977 (2012)Google Scholar
  8. 8.
    Tielbeek, J.A.W., Vos, F.M., Stoker, J.: A Computer-assisted model for detection of MRI signs of Crohn’s disease activity: future or fiction? Abdom. Imaging 37, 967–973 (2012)CrossRefGoogle Scholar
  9. 9.
    Ziech, M.L., Lavini, C., Caan, M.W., Nio, C.Y., Stokkers, P.C., Bipat, S., Ponsioen, C.Y., Nederveen, A.J., Stoker, J.: Dynamic contrast-enhanced MRI in patients with luminal Crohn’s disease. Eur. J. Radiol. 81, 3019–3027 (2012)CrossRefGoogle Scholar
  10. 10.
    Naziroglu, R.E., Van Vliet, L.J., Vos, F.M.: Measuring and quantifying bowel wall thickening for assessing Crohn’s disease severity. In: VIGOR ++ Workshop 2014 (2014)Google Scholar
  11. 11.
    Li, Z., Tielbeek, J.A.W., Caan, M.W.A., Ziech, M.L.W., Nio, C.Y., Stoker, J., van Vliet, L.J., Vos, F.M.: Expiration phase template-based motion correction of free-breathing abdominal dynamic contrast enhanced MRI. in submission (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter J. Schüffler
    • 1
  • Dwarikanath Mahapatra
    • 1
  • Robiel Naziroglu
    • 2
  • Zhang Li
    • 2
  • Carl A. J. Puylaert
    • 3
  • Rado Andriantsimiavona
    • 4
  • Franciscus M. Vos
    • 2
    • 3
  • Doug A. Pendsé
    • 5
  • C. Yung Nio
    • 3
  • Jaap Stoker
    • 3
  • Stuart A. Taylor
    • 5
    • 6
  • Joachim M. Buhmann
    • 1
  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland
  2. 2.Quantitative Imaging GroupTU DelftDelftThe Netherlands
  3. 3.Department of RadiologyAMCAmsterdamThe Netherlands
  4. 4.Biotronics3D LtdLondonUK
  5. 5.Centre for Medical ImagingUCLLondonUK
  6. 6.Department of RadiologyUCLHLondonUK

Personalised recommendations