SKOS Sources Transformations for Ontology Engineering: Agronomical Taxonomy Use Case

  • Fabien Amarger
  • Jean-Pierre Chanet
  • Ollivier Haemmerlé
  • Nathalie Hernandez
  • Catherine Roussey
Part of the Communications in Computer and Information Science book series (CCIS, volume 478)

Abstract

Sources like thesauri or taxonomies are already used as input in ontology development process. Some of them are also published on the LOD using the SKOS format. Reusing this type of sources to build an ontology is not an easy task. The ontology developer has to face different syntax and different modelling goals. We propose in this paper a new methodology to transform several non-ontological sources into a single ontology. We take into account: the redundancy of the knowledge extracted from sources in order to discover the consensual knowledge and Ontology Design Patterns (ODPs) to guide the transformation process. We have evaluated our methodology by creating an ontology on wheat taxonomy from three sources: Agrovoc thesaurus, TaxRef taxonomy, NCBI taxonomy.

Keywords

Ontology Development Ontology Design Pattern Non-Ontological Sources SKOS Trust Agriculture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amarger, F., Roussey, C., Chanet, J.P., Haemmerlé, O., Hernandez, N.: Etat de l´art: Extraction d´information à partir de thésaurus pour générer une ontologie. In: INFORSID, pp. 29–44 (2013)Google Scholar
  2. 2.
    Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. In: Web Semantics: Science, Services and Agents on the World Wide Web, pp. 58–71 (2007)Google Scholar
  3. 3.
    Charlet, J., Declerck, G., Dhombres, F., Gayet, P., Miroux, P., Vandenbussche, P.Y.: Construire une ontologie médicale pour la recherche d’information: problématiques terminologiques et de modélisation. In: Ingénierie des Connaissances, pp. 33–48 (2012)Google Scholar
  4. 4.
    Chrisment, C., Haemmerlé, O., Hernandez, N., Mothe, J.: Méthodologie de transformation d’un thesaurus en une ontologie de domaine. In: Revue d’Intelligence Artificielle, pp. 7–37 (2008)Google Scholar
  5. 5.
    Downey, D., Etzioni, O., Soderland, S.: A probabilistic model of redundancy in information extraction. In: International Joint Conferences on Artificial Intelligence, pp. 1034–1041 (2005)Google Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology matching (2007)Google Scholar
  7. 7.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. In: American Asociation for Artificial Intelligence (1997)Google Scholar
  8. 8.
    Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Handbook on Ontologies, pp. 221–243 (2009)Google Scholar
  9. 9.
    Gil, R., Martín-Bautista, M.: Smol: a systemic methodology for ontology learning from heterogeneous sources. Journal of Intelligent Information Systems, 415–455 (2014)Google Scholar
  10. 10.
    Hahn, U.: Turning informal thesauri into formal ontologies: a feasibility study on biomedical knowledge re-use. In: Comparative and Functional Genomics, pp. 94–97 (2003)Google Scholar
  11. 11.
    Hepp, M., De Bruijn, J.: GenTax: a generic methodology for deriving OWL and RDF-S ontologies from hierarchical classifications, thesauri, and inconsistent taxonomies. In: European Semantic Web Conference, pp. 129–144 (2007)Google Scholar
  12. 12.
    Jiménez-Ruiz, E., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: Algorithms and implementation. In: European Conference on Artificial Intelligence, pp. 444–449 (2012)Google Scholar
  13. 13.
    Kless, D., Jansen, L., Lindenthal, J., Wiebensohn, J.: A method for re-engineering a thesaurus into an ontology. In: FOIS, p. 133 (2012)Google Scholar
  14. 14.
    Li, P., Li, Y.: On transformation from the thesaurus into domain ontology. In: Advanced Materials Research, pp. 2698–2704 (2013)Google Scholar
  15. 15.
    Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-Based Ontology Design. In: Ontology Engineering in a Networked World, pp. 35–64. Springer (2012)Google Scholar
  16. 16.
    Roussey, C., Chanet, J.P., Cellier, V., Amarger, F.: Agronomic taxon. In: Workshop on Open Data, p. 5 (2013)Google Scholar
  17. 17.
    Soergel, D., Lauser, B., Liang, A., Fisseha, F., Keizer, J., Katz, S.: Reengineering thesauri for new applications: The AGROVOC example. Journal of Digital Information, 1–23 (2004)Google Scholar
  18. 18.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A.: Ontology engineering in a networked world (2012)Google Scholar
  19. 19.
    van Assem, M., Menken, M.R., Schreiber, G., Wielemaker, J., Wielinga, B.: A method for converting thesauri to RDF/OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 17–31. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Villazón-Terrazas, B., Suárez-Figueroa, M.C., Gómez-Pérez, A.: A pattern-based method for re-engineering non-ontological resources into ontologies. In: Int. J. Semantic Web Inf. Syst., pp. 27–63 (2010)Google Scholar
  21. 21.
    Wielinga, B., Schreiber, A.T., Wielemaker, J., Sandberg, J.A.C.: From thesaurus to ontology. In: International Conference on Knowledge Capture, pp. 194–201 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fabien Amarger
    • 1
    • 2
  • Jean-Pierre Chanet
    • 2
  • Ollivier Haemmerlé
    • 1
  • Nathalie Hernandez
    • 1
  • Catherine Roussey
    • 2
  1. 1.IRIT, UMR 5505, UT2J, Département de Mathématiques-InformatiqueToulouse CedexFrance
  2. 2.TSCF, Irstea de Clermont FerrandAubièreFrance

Personalised recommendations