Towards Exploiting Query History for Adaptive Ontology-Based Visual Query Formulation

  • Ahmet Soylu
  • Martin Giese
  • Ernesto Jimenez-Ruiz
  • Evgeny Kharlamov
  • Dmitriy Zheleznyakov
  • Ian Horrocks
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 478)


Grounded on real industrial use cases, we recently proposed an ontology-based visual query system for SPARQL, named OptiqueVQS. Ontology-based visual query systems employ ontologies and visual representations to depict the domain of interest and queries, and are promising to enable end users without any technical background to access data on their own. However, even with considerably small ontologies, the number of ontology elements to choose from increases drastically, and hence hinders usability. Therefore, in this paper, we propose a method using the log of past queries for ranking and suggesting query extensions as a user types a query, and identify emerging issues to be addressed.


Visual Query Formulation Ontology-based Data Access SPARQL Ranking Recommendation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y., Klappi, H., Koubarakis, M., Lenzerini, M., Moller, R., Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R., Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In: Rajendra, A. (ed.) Big Data Computing. Chapman and Hall/CRC (2013)Google Scholar
  2. 2.
    Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: A survey. Journal of Visual Languages and Computing 8(2), 215–260 (1997)CrossRefGoogle Scholar
  3. 3.
    Lieberman, H., Paternó, F., Klann, M., Wulf, V.: End-User Development: An Emerging Paradigm. In: Lieberman, H., Paternó, F., Wulf, V. (eds.) End-User Development. Human-Computer Interaction Series, vol. 9, pp. 1–8. Springer, Netherlands (2006)CrossRefGoogle Scholar
  4. 4.
    Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: OptiqueVQS – Towards an Ontology-based Visual Query System for Big Data. In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES 2013), pp. 119–126. ACM (2013)Google Scholar
  5. 5.
    Soylu, A., Skjæveland, M., Giese, M., Horrocks, I., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: A Preliminary Approach on Ontology-based Visual Query Formulation for Big Data. In: Garoufallou, E., Greenberg, J. (eds.) MTSR 2013. CCIS, vol. 390, pp. 201–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on novice user query performance with conceptual and logical database interfaces. IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans 34(2), 276–281 (2004)CrossRefGoogle Scholar
  7. 7.
    Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the Semantic Web: A survey. Semantic Web 3(2), 169–209 (2012)Google Scholar
  8. 8.
    Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and Computer Software 38(4), 167–182 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods - A survey. ACM Computing Surveys 39(4), 10:1–10:43 (2007)Google Scholar
  10. 10.
    Grau, B.C., Giese, M., Horrocks, I., Hubauer, T., Jimenez-Ruiz, E., Kharlamov, E., Schmidt, M., Soylu, A., Zheleznyakov, D.: Towards Query Formulation and Query-Driven Ontology Extensions in OBDA Systems. In: Proceedings of the 10th OWL: Experiences and Directions Workshop (OWLED 2013). CEUR Workshop Proceedings, vol. 1080. (2013)Google Scholar
  11. 11.
    Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): Adaptive Web 2007. LNCS, vol. 4321. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation, W3C (March 2013)Google Scholar
  13. 13.
    Ter Hofstede, A.H.M., Proper, H.A., Van Der Weide, T.P.: Query formulation as an information retrieval problem. Computer Journal 39(4), 255–274 (1996)CrossRefGoogle Scholar
  14. 14.
    Tunkelang, D., Marchionini, G.: Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan and Claypool Publishers (2009)Google Scholar
  15. 15.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal of Artificial Intelligence Research 36(1), 165–228 (2009)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles. W3C Recommendation, W3C (October 2009)Google Scholar
  17. 17.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: The Next Step for OWL. Web Semantics: Science, Services and Agents on the World Wide Web 6(4), 309–322 (2008)CrossRefGoogle Scholar
  18. 18.
    Ray, S.S.: Subgraphs, Paths, and Connected Graphs. In: Graph Theory with Algorithms and its Applications. Springer India (2013)Google Scholar
  19. 19.
    Dividino, R., Groner, G.: Which of the following SPARQL Queries are Similar? Why? In: Proceedings of the 1st International Workshop on Linked Data for Information Extraction (LD4IE 2013). CEUR Workshop Proceedings, vol. 1057. (2013)Google Scholar
  20. 20.
    Huang, H., Liu, C., Zhou, X.: Computing Relaxed Answers on RDF Databases. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 163–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An ontology based visual tool for query formulation support. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004). Frontiers in Artificial Intelligence and Applications, vol. 110, pp. 308–312. IOS Press (2004)Google Scholar
  22. 22.
    Kapetanios, E., Baer, D., Groenewoud, P.: Simplifying syntactic and semantic parsing of NL-based queries in advanced application domains. Data & Knowledge Engineering 55(1), 38–58 (2005)CrossRefGoogle Scholar
  23. 23.
    Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Ontology Enabled Graphical Database Query Tool for End-Users. In: Proceedings of the 8th International Baltic Conference on Databases and Information Systems (DB&IS 2008). Frontiers in Artificial Intelligence and Applications, vol. 187, pp. 105–116. IOS Press (2009)Google Scholar
  24. 24.
    Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: SnipSuggest: Context-aware Autocompletion for SQL. Proceedings of the VLDB Endowment 4(1), 22–33 (2010)CrossRefGoogle Scholar
  25. 25.
    Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing RDF Graph Summary with Application to Assisted SPARQL Formulation. In: Proceedings of the 23rd International Workshop on Database and Expert Systems Applications (DEXA 2012), pp. 261–266. IEEE (2012)Google Scholar
  26. 26.
    Kramer, K., Dividino, R., Groner, G.: SPACE: SPARQL Index for Efficient Autocompletion. In: Proceedings of the ISWC 2013 Posters & Demonstrations Track (ISWC-PD 2013). CEUR Workshop Proceedings, vol. 1035. (2013)Google Scholar
  27. 27.
    Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance Benchmark. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE 2009), pp. 222–233. IEEE Computer Society (2009)Google Scholar
  28. 28.
    Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on Semantic Web and Information Systems 5(2), 1–24 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ahmet Soylu
    • 1
  • Martin Giese
    • 1
  • Ernesto Jimenez-Ruiz
    • 2
  • Evgeny Kharlamov
    • 2
  • Dmitriy Zheleznyakov
    • 2
  • Ian Horrocks
    • 2
  1. 1.Department of InformaticsUniversity of OsloNorway
  2. 2.Department of Computer ScienceUniversity of OxfordUnited Kingdom

Personalised recommendations